v/examples/sokol/06_obj_viewer/modules/obj/obj.v

596 lines
13 KiB
V

module obj
/**********************************************************************
*
* .obj loader
*
* Copyright (c) 2021 Dario Deledda. All rights reserved.
* Use of this source code is governed by an MIT license
* that can be found in the LICENSE file.
*
* TODO:
**********************************************************************/
import gg.m4
import strconv
enum F_state {
start
first
ints
decimals
exp_start
exp_sign
exp_int
}
// read a int from a string
fn get_int(s string, start_index int) (int, int) {
mut i := start_index
mut res := 0
mut sgn := 1
mut state := F_state.start
for true {
if i >= s.len {
break
}
c := s[i]
if state == .start {
match c {
`+` {
i++
state = .ints
continue
}
`-` {
sgn = -1
i++
state = .ints
continue
}
`0`...`9` {
state = .ints
}
` `, `\t` {
i++
continue
}
else { // no number found
break
}
}
}
if state == .ints {
match c {
`0`...`9` {
// println("$res => ${(int(c) - 48)}")
res = res * 10 + (int(c) - 48)
i++
continue
}
else {
break
}
}
}
}
// println("---")
return res * sgn, i
}
// reas a float number from a string
fn get_float(s string, start_index int) (f64, int) {
mut i1 := start_index //+ 1
for i1 < s.len && s[i1] in [` `, `\t`] {
i1++
}
mut i := i1
for i < s.len {
if s[i] in [` `, `\t`] {
break
}
i++
}
// println(" get_float: ($start_index,$i) [${s[start_index..i]}]")
// f_res := strconv.atof_quick(s[start_index..i])
f_res := strconv.atof_quick(s[i1..i])
return f_res, i
}
// read 3 f32 in sequence from a string
fn parse_3f(row string, start_index int) m4.Vec4 {
// println(row)
mut i := start_index //+ 1
mut f1 := f64(0)
mut f2 := f64(0)
f0, mut p := get_float(row, i)
// print("Here f0: $f0 $p ")
f1, p = get_float(row, p + 1)
// print("Here f1: $f1 $p ")
f2, p = get_float(row, p + 1)
// print("Here f2: $f2 $p ")
return m4.Vec4{
e: [f32(f0), f32(f1), f32(f2), 1]!
}
}
// reas a sequence of f32 from a string
fn (mut m ObjPart) parse_floats(row string, start_index int) m4.Vec4 {
mut i := start_index //+ 1
mut res_f := f64(0)
mut res := m4.Vec4{
e: [f32(0), 0, 0, 1]!
}
mut c := 0
for true {
res_f, i = get_float(row, i)
unsafe {
res.e[c] = f32(res_f)
}
c++
i++
if i >= row.len {
break
}
}
return res
}
// read and manage all the faes from an .obj file data
fn (mut p Part) parse_faces(row string, start_index int, obj ObjPart) {
mut i := start_index + 1
mut res := [][3]int{}
mut v := 0
mut t := 0
mut n := 0
// println("row: ${row[i..]}")
for true {
t = 0
n = 0
if i >= row.len {
break
}
mut c := row[i]
if (c > `9` || c < `0`) && c != `-` {
i++
continue
}
v, i = get_int(row, i)
if i < row.len && row[i] == `/` {
if row[i + 1] != `/` {
t, i = get_int(row, i + 1)
if i < row.len && row[i] == `/` {
n, i = get_int(row, i + 1)
}
} else {
i++
n, i = get_int(row, i + 1)
}
}
// manage negative indexes
// NOTE: not well suporeted now
if v < 0 {
// println("${obj.v.len} ${obj.v.len-c}")
v = obj.v.len - v + 1
// exit(0)
}
if n < 0 {
n = obj.vn.len - n + 1
}
if t < 0 {
t = obj.vt.len - t + 1
}
res << [v - 1, n - 1, t - 1]!
}
// println("ok res: ${res}")
// println(p.faces.len)
p.faces << res
}
// parse the obj file, if single_material is true it use only one default material
pub fn (mut obj_part ObjPart) parse_obj_buffer(rows []string, single_material bool) {
mut mat_count := 0
mut row_count := 0
default_part := Part{
name: 'default part'
}
obj_part.part << default_part
// println("OBJ file has ${rows.len} rows")
for c, row in rows {
// println("$c $row")
mut i := 0
row_count++
for true {
if i >= row.len {
break
}
match row[i] {
`s` {
break
}
`m` {
if row[i..i + 6] == 'mtllib' {
obj_part.material_file = row[i + 7..].trim_space()
obj_part.load_materials()
}
break
}
`o`, `g` {
mut part := Part{}
part.name = row[i + 1..].trim_space()
obj_part.part << part
mat_count = 0
break
}
`u` {
if single_material == false && row[i..i + 6] == 'usemtl' {
material := row[i + 7..].trim_space()
// println("material: $material")
// manage multiple materials in an part
if obj_part.part[obj_part.part.len - 1].material.len > 0 {
mat_count++
mut part := Part{}
if mat_count > 1 {
li := obj_part.part[obj_part.part.len - 1].name.last_index('_m') or {
obj_part.part[obj_part.part.len - 1].name.len - 1
}
part.name = obj_part.part[obj_part.part.len - 1].name[..li] +
'_m${mat_count:02}'
} else {
part.name = obj_part.part[obj_part.part.len - 1].name + '_m01'
}
obj_part.part << part
}
obj_part.part[obj_part.part.len - 1].material = material
}
break
}
`v` {
i++
match row[i] {
// normals
`n` {
obj_part.vn << parse_3f(row, i + 2)
// println("Vertex line: $c")
break
}
// parameteres uvw
`p` {
obj_part.vp << parse_3f(row, i + 2)
// println("Vertex line: ${obj_part.vp.len}")
break
}
// texture uvw
`t` {
obj_part.vt << obj_part.parse_floats(row, i + 2)
// println("Vertex line: $c")
break
}
else {
obj_part.v << parse_3f(row, i + 1)
// println("$row => ${obj_part.v[obj_part.v.len-1]}")
break
}
}
}
`f` {
// println("$c $row")
obj_part.part[obj_part.part.len - 1].parse_faces(row, i, obj_part)
// println(obj_part.part[obj_part.part.len - 1].faces.len)
// println("Faces line: $c")
break
}
// end of the line, comments
`\n`, `#` {
break
}
else {}
}
i++
}
// if c == 2 { break }
if c % 100000 == 0 && c > 0 {
println('$c rows parsed')
}
}
println('$row_count .obj Rows parsed')
// remove default part if empty
if obj_part.part.len > 1 && obj_part.part[0].faces.len == 0 {
obj_part.part = obj_part.part[1..]
}
}
// load the materials if found the .mtl file
fn (mut obj_part ObjPart) load_materials() {
rows := read_lines_from_file(obj_part.material_file)
println('Material file [$obj_part.material_file] $rows.len Rows.')
for row in rows {
// println("$row")
mut i := 0
for true {
if i >= row.len {
break
}
match row[i] {
`n` {
if row[i..i + 6] == 'newmtl' {
name := row[i + 6..].trim_space()
mut mat := Material{
name: name
}
obj_part.mat << mat
break
}
}
`K` {
if row[i + 1] !in [`a`, `d`, `e`, `s`] {
break
}
k_name := row[i..i + 2]
i += 3
value := parse_3f(row, i)
obj_part.mat[obj_part.mat.len - 1].ks[k_name] = value
break
}
`N` {
n_name := row[i..i + 2]
i += 3
value, _ := get_float(row, i)
obj_part.mat[obj_part.mat.len - 1].ns[n_name] = f32(value)
break
}
`m` {
if row[i..i + 4] == 'map_' {
name := row[i..i + 6]
if (i + 7) < row.len {
file_name := row[i + 7..].trim_space()
obj_part.mat[obj_part.mat.len - 1].maps[name] = file_name
}
break
}
}
// trasparency
`d` {
if row[i + 1] == ` ` {
value, _ := get_float(row, i + 2)
obj_part.mat[obj_part.mat.len - 1].ns['Tr'] = f32(value)
}
}
`T` {
if row[i + 1] == `r` {
value, _ := get_float(row, i + 3)
obj_part.mat[obj_part.mat.len - 1].ns['Tr'] = f32(1.0 - value)
}
}
// end of the line, comments
`\n`, `#` {
break
}
` `, `\t` {
i++
continue
}
else {
break
}
}
i++
}
}
// create map material name => material index
for i, m in obj_part.mat {
if m.name !in obj_part.mat_map {
obj_part.mat_map[m.name] = i
}
}
println('Material Loading Done!')
}
//==============================================================================
// Sokol data
//==============================================================================
// vertex data struct
pub struct Vertex_pnct {
pub mut:
x f32 // poistion
y f32
z f32
nx f32 // normal
ny f32
nz f32
color u32 = 0xFFFFFFFF // color
u f32 // uv
v f32
// u u16 // for compatibility with D3D11
// v u16 // for compatibility with D3D11
}
// struct used to pass the data to the sokol calls
pub struct Skl_buffer {
pub mut:
vbuf []Vertex_pnct
ibuf []u32
n_vertex u32
}
// transforms data from .obj format to buffer ready to be used in the render
pub fn (mut obj_part ObjPart) get_buffer(in_part_list []int) Skl_buffer {
// in_part := 0
mut v_count_index := 0
mut out_buf := Skl_buffer{}
mut cache := map[string]int{}
mut cache_hit := 0
// has_normals := obj_part.vn.len > 0
// has_uvs := obj_part.vt.len > 0
for in_part in in_part_list {
part := obj_part.part[in_part]
for fc, face in part.faces {
// println("$fc $face")
// default 3 faces
mut v_seq := [0, 1, 2]
if face.len == 4 {
v_seq = [0, 1, 2, 0, 2, 3]
}
// if big faces => use the fan of triangles as solution
// Note: this trick doesn't work with concave faces
if face.len > 4 {
v_seq = []
mut i := 1
for i < (face.len - 1) {
v_seq << 0
v_seq << i
v_seq << (i + 1)
i++
}
// println("BIG FACES! ${fc} ${face.len} v_seq:${v_seq.len}")
}
// no vertex index, generate normals
if face[0][1] == -1 && face.len >= 3 {
mut v_count := 0
v0 := face[v_count + 0][0]
v1 := face[v_count + 1][0]
v2 := face[v_count + 2][0]
vec0 := obj_part.v[v2] - obj_part.v[v1]
vec1 := obj_part.v[v0] - obj_part.v[v1]
tmp_normal := vec0 % vec1
for v_count < face.len {
obj_part.vn << tmp_normal
obj_part.part[in_part].faces[fc][v_count][1] = obj_part.vn.len - 1
v_count++
}
}
for vertex_index in v_seq {
// position
if vertex_index >= face.len {
continue
}
v_index := face[vertex_index][0] // vertex index
n_index := face[vertex_index][1] // normal index
t_index := face[vertex_index][2] // uv texture index
key := '${v_index}_${n_index}_$t_index'
if key !in cache {
cache[key] = v_count_index
mut pnct := Vertex_pnct{
x: obj_part.v[v_index].e[0]
y: obj_part.v[v_index].e[1]
z: obj_part.v[v_index].e[2]
}
// normal
if n_index >= 0 {
pnct.nx = obj_part.vn[n_index].e[0]
pnct.ny = obj_part.vn[n_index].e[1]
pnct.nz = obj_part.vn[n_index].e[2]
}
// texture uv
if t_index >= 0 {
pnct.u = obj_part.vt[t_index].e[0]
pnct.v = obj_part.vt[t_index].e[1]
}
out_buf.vbuf << pnct
out_buf.ibuf << u32(v_count_index)
v_count_index++
} else {
// println("Cache used! $key")
out_buf.ibuf << u32(cache[key])
cache_hit++
}
}
}
}
/*
println("------------")
for c1, x1 in out_buf.vbuf[..10] {
println("$c1 $x1")
}
println(out_buf.ibuf[..10])
*/
// println("vbuf size: ${out_buf.vbuf.len} ibuf size: ${out_buf.ibuf.len} Cache hit: $cache_hit")
out_buf.n_vertex = u32(out_buf.ibuf.len)
return out_buf
}
//==============================================================================
// Utility
//==============================================================================
// print on the console the summary of the .obj model loaded
pub fn (obj_part ObjPart) summary() {
println('---- Stats ----')
println('vertices: $obj_part.v.len')
println('normals : $obj_part.vn.len')
println('uv : $obj_part.vt.len')
println('parts : $obj_part.part.len')
// Parts
println('---- Parts ----')
for c, x in obj_part.part {
println('${c:3} [${x.name:-16}] mat:[${x.material:-10}] ${x.faces.len:7} faces')
}
// Materials
println('---- Materials ----')
println('Material dict: $obj_part.mat_map.keys()')
for c, mat in obj_part.mat {
println('${c:3} [${mat.name:-16}]')
for k, v in mat.ks {
print('$k = $v')
}
for k, v in mat.ns {
println('$k = $v')
}
for k, v in mat.maps {
println('$k = $v')
}
}
}
// debug test function, do not remove.
pub fn tst() {
/*
//fname := "capsule.obj"
//fname := "Forklift.obj"
fname := "cube.obj"
//fname := "Orange Robot 3D ObjPart.obj"
mut obj := ObjPart{}
buf := os.read_lines(fname) or { panic(err.msg) }
obj.parse_obj_buffer(buf)
obj.summary()
*/
/*
a :="f 7048 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7003"
mut f1 := 0
mut f2 := 0
f0,mut p := get_int(a,1)
f1, p = get_int(a,p)
f2, p = get_int(a,p)
println("res: ${f0} ${f1} ${f2}")
*/
/*
a :="v -0 0.107769 -0.755914"
println("${parse_3f(a,1)}")
*/
/*
ort := m4.ortho(0,300,0,200,0,0)
println(ort)
a := m4.vec3(0,0,0)
println("a: $a")
res := m4.mul_vec(ort, a)
println("res:\n${res}")
*/
s := 'K 1 1 1'
r := strconv.atof_quick(s[1..s.len - 1])
println(r)
}