799 lines
28 KiB
V
799 lines
28 KiB
V
import math
|
|
import math.complex as cmplx
|
|
|
|
fn tst_res(str1 string, str2 string) bool {
|
|
if (math.abs(str1.f64() - str2.f64())) < 1e-5 {
|
|
return true
|
|
}
|
|
return false
|
|
}
|
|
|
|
fn test_complex_addition() {
|
|
// Test is based on and verified from practice examples of Khan Academy
|
|
// https://www.khanacademy.org/math/precalculus/imaginary-and-complex-numbers
|
|
mut c1 := cmplx.complex(0,-10)
|
|
mut c2 := cmplx.complex(-40,8)
|
|
mut result := c1 + c2
|
|
assert result.equals(cmplx.complex(-40,-2))
|
|
c1 = cmplx.complex(-71,2)
|
|
c2 = cmplx.complex(88,-12)
|
|
result = c1 + c2
|
|
assert result.equals(cmplx.complex(17,-10))
|
|
c1 = cmplx.complex(0,-30)
|
|
c2 = cmplx.complex(52,-30)
|
|
result = c1 + c2
|
|
assert result.equals(cmplx.complex(52,-60))
|
|
c1 = cmplx.complex(12,-9)
|
|
c2 = cmplx.complex(32,-6)
|
|
result = c1 + c2
|
|
assert result.equals(cmplx.complex(44,-15))
|
|
}
|
|
|
|
fn test_complex_subtraction() {
|
|
// Test is based on and verified from practice examples of Khan Academy
|
|
// https://www.khanacademy.org/math/precalculus/imaginary-and-complex-numbers
|
|
mut c1 := cmplx.complex(-8,0)
|
|
mut c2 := cmplx.complex(6,30)
|
|
mut result := c1 - c2
|
|
assert result.equals(cmplx.complex(-14,-30))
|
|
c1 = cmplx.complex(-19,7)
|
|
c2 = cmplx.complex(29,32)
|
|
result = c1 - c2
|
|
assert result.equals(cmplx.complex(-48,-25))
|
|
c1 = cmplx.complex(12,0)
|
|
c2 = cmplx.complex(23,13)
|
|
result = c1 - c2
|
|
assert result.equals(cmplx.complex(-11,-13))
|
|
c1 = cmplx.complex(-14,3)
|
|
c2 = cmplx.complex(0,14)
|
|
result = c1 - c2
|
|
assert result.equals(cmplx.complex(-14,-11))
|
|
}
|
|
|
|
fn test_complex_multiplication() {
|
|
// Test is based on and verified from practice examples of Khan Academy
|
|
// https://www.khanacademy.org/math/precalculus/imaginary-and-complex-numbers
|
|
mut c1 := cmplx.complex(1,2)
|
|
mut c2 := cmplx.complex(1,-4)
|
|
mut result := c1 * c2
|
|
assert result.equals(cmplx.complex(9,-2))
|
|
c1 = cmplx.complex(-4,-4)
|
|
c2 = cmplx.complex(-5,-3)
|
|
result = c1 * c2
|
|
assert result.equals(cmplx.complex(8,32))
|
|
c1 = cmplx.complex(4,4)
|
|
c2 = cmplx.complex(-2,-5)
|
|
result = c1 * c2
|
|
assert result.equals(cmplx.complex(12,-28))
|
|
c1 = cmplx.complex(2,-2)
|
|
c2 = cmplx.complex(4,-4)
|
|
result = c1 * c2
|
|
assert result.equals(cmplx.complex(0,-16))
|
|
}
|
|
|
|
fn test_complex_division() {
|
|
// Test is based on and verified from practice examples of Khan Academy
|
|
// https://www.khanacademy.org/math/precalculus/imaginary-and-complex-numbers
|
|
mut c1 := cmplx.complex(-9,-6)
|
|
mut c2 := cmplx.complex(-3,-2)
|
|
mut result := c1 / c2
|
|
assert result.equals(cmplx.complex(3,0))
|
|
c1 = cmplx.complex(-23,11)
|
|
c2 = cmplx.complex(5,1)
|
|
result = c1 / c2
|
|
assert result.equals(cmplx.complex(-4,3))
|
|
c1 = cmplx.complex(8,-2)
|
|
c2 = cmplx.complex(-4,1)
|
|
result = c1 / c2
|
|
assert result.equals(cmplx.complex(-2,0))
|
|
c1 = cmplx.complex(11,24)
|
|
c2 = cmplx.complex(-4,-1)
|
|
result = c1 / c2
|
|
assert result.equals(cmplx.complex(-4,-5))
|
|
}
|
|
|
|
fn test_complex_conjugate() {
|
|
// Test is based on and verified from practice examples of Khan Academy
|
|
// https://www.khanacademy.org/math/precalculus/imaginary-and-complex-numbers
|
|
mut c1 := cmplx.complex(0,8)
|
|
mut result := c1.conjugate()
|
|
assert result.equals(cmplx.complex(0,-8))
|
|
c1 = cmplx.complex(7,3)
|
|
result = c1.conjugate()
|
|
assert result.equals(cmplx.complex(7,-3))
|
|
c1 = cmplx.complex(2,2)
|
|
result = c1.conjugate()
|
|
assert result.equals(cmplx.complex(2,-2))
|
|
c1 = cmplx.complex(7,0)
|
|
result = c1.conjugate()
|
|
assert result.equals(cmplx.complex(7,0))
|
|
}
|
|
|
|
fn test_complex_equals() {
|
|
mut c1 := cmplx.complex(0,8)
|
|
mut c2 := cmplx.complex(0,8)
|
|
assert c1.equals(c2)
|
|
c1 = cmplx.complex(-3,19)
|
|
c2 = cmplx.complex(-3,19)
|
|
assert c1.equals(c2)
|
|
}
|
|
|
|
fn test_complex_abs() {
|
|
mut c1 := cmplx.complex(3,4)
|
|
assert c1.abs() == 5
|
|
c1 = cmplx.complex(1,2)
|
|
assert c1.abs().eq(math.sqrt(5))
|
|
assert c1.abs().eq(c1.conjugate().abs())
|
|
c1 = cmplx.complex(7,0)
|
|
assert c1.abs() == 7
|
|
}
|
|
|
|
fn test_complex_angle(){
|
|
// Test is based on and verified from practice examples of Khan Academy
|
|
// https://www.khanacademy.org/math/precalculus/imaginary-and-complex-numbers
|
|
mut c := cmplx.complex(1, 0)
|
|
assert (c.angle() * 180 / math.pi).eq(0)
|
|
c = cmplx.complex(1, 1)
|
|
assert (c.angle() * 180 / math.pi).eq(45)
|
|
c = cmplx.complex(0, 1)
|
|
assert (c.angle() * 180 / math.pi).eq(90)
|
|
c = cmplx.complex(-1, 1)
|
|
assert (c.angle() * 180 / math.pi).eq(135)
|
|
c = cmplx.complex(-1, -1)
|
|
assert (c.angle() * 180 / math.pi).eq(-135)
|
|
cc := c.conjugate()
|
|
assert (cc.angle() + c.angle()).eq(0)
|
|
}
|
|
|
|
|
|
fn test_complex_addinv() {
|
|
// Tests were also verified on Wolfram Alpha
|
|
mut c1 := cmplx.complex(5,7)
|
|
mut c2 := cmplx.complex(-5,-7)
|
|
mut result := c1.addinv()
|
|
assert result.equals(c2)
|
|
c1 = cmplx.complex(-3,4)
|
|
c2 = cmplx.complex(3,-4)
|
|
result = c1.addinv()
|
|
assert result.equals(c2)
|
|
c1 = cmplx.complex(-1,-2)
|
|
c2 = cmplx.complex(1,2)
|
|
result = c1.addinv()
|
|
assert result.equals(c2)
|
|
}
|
|
|
|
fn test_complex_mulinv() {
|
|
// Tests were also verified on Wolfram Alpha
|
|
mut c1 := cmplx.complex(5,7)
|
|
mut c2 := cmplx.complex(0.067568,-0.094595)
|
|
mut result := c1.mulinv()
|
|
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
|
println(c2.str())
|
|
println(result.str())
|
|
assert result.str().eq(c2.str())
|
|
c1 = cmplx.complex(-3,4)
|
|
c2 = cmplx.complex(-0.12,-0.16)
|
|
result = c1.mulinv()
|
|
assert result.str().eq(c2.str())
|
|
c1 = cmplx.complex(-1,-2)
|
|
c2 = cmplx.complex(-0.2,0.4)
|
|
result = c1.mulinv()
|
|
assert result.equals(c2)
|
|
}
|
|
|
|
fn test_complex_mod() {
|
|
// Tests were also verified on Wolfram Alpha
|
|
mut c1 := cmplx.complex(5,7)
|
|
mut result := c1.mod()
|
|
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
|
assert tst_res(result.str(), '8.602325')
|
|
c1 = cmplx.complex(-3,4)
|
|
result = c1.mod()
|
|
assert result == 5
|
|
c1 = cmplx.complex(-1,-2)
|
|
result = c1.mod()
|
|
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
|
assert tst_res(result.str(), '2.236068')
|
|
}
|
|
|
|
fn test_complex_pow() {
|
|
// Tests were also verified on Wolfram Alpha
|
|
mut c1 := cmplx.complex(5,7)
|
|
mut c2 := cmplx.complex(-24.0,70.0)
|
|
mut result := c1.pow(2)
|
|
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
|
assert result.str().eq(c2.str())
|
|
c1 = cmplx.complex(-3,4)
|
|
c2 = cmplx.complex(117,44)
|
|
result = c1.pow(3)
|
|
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
|
assert result.str().eq(c2.str())
|
|
c1 = cmplx.complex(-1,-2)
|
|
c2 = cmplx.complex(-7,-24)
|
|
result = c1.pow(4)
|
|
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
|
assert result.str().eq(c2.str())
|
|
}
|
|
|
|
fn test_complex_root() {
|
|
// Tests were also verified on Wolfram Alpha
|
|
mut c1 := cmplx.complex(5,7)
|
|
mut c2 := cmplx.complex(2.607904,1.342074)
|
|
mut result := c1.root(2)
|
|
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
|
assert result.str().eq(c2.str())
|
|
c1 = cmplx.complex(-3,4)
|
|
c2 = cmplx.complex(1.264953,1.150614)
|
|
result = c1.root(3)
|
|
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
|
assert result.str().eq(c2.str())
|
|
c1 = cmplx.complex(-1,-2)
|
|
c2 = cmplx.complex(1.068059,-0.595482)
|
|
result = c1.root(4)
|
|
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
|
assert result.str().eq(c2.str())
|
|
}
|
|
|
|
fn test_complex_exp() {
|
|
// Tests were also verified on Wolfram Alpha
|
|
mut c1 := cmplx.complex(5,7)
|
|
mut c2 := cmplx.complex(111.889015,97.505457)
|
|
mut result := c1.exp()
|
|
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
|
assert result.str().eq(c2.str())
|
|
c1 = cmplx.complex(-3,4)
|
|
c2 = cmplx.complex(-0.032543,-0.037679)
|
|
result = c1.exp()
|
|
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
|
assert result.str().eq(c2.str())
|
|
c1 = cmplx.complex(-1,-2)
|
|
c2 = cmplx.complex(-0.153092,-0.334512)
|
|
result = c1.exp()
|
|
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
|
assert result.str().eq(c2.str())
|
|
}
|
|
|
|
fn test_complex_ln() {
|
|
// Tests were also verified on Wolfram Alpha
|
|
mut c1 := cmplx.complex(5,7)
|
|
mut c2 := cmplx.complex(2.152033,0.950547)
|
|
mut result := c1.ln()
|
|
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
|
assert result.str().eq(c2.str())
|
|
c1 = cmplx.complex(-3,4)
|
|
c2 = cmplx.complex(1.609438,2.214297)
|
|
result = c1.ln()
|
|
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
|
assert result.str().eq(c2.str())
|
|
c1 = cmplx.complex(-1,-2)
|
|
c2 = cmplx.complex(0.804719,-2.034444)
|
|
result = c1.ln()
|
|
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
|
assert result.str().eq(c2.str())
|
|
}
|
|
|
|
fn test_complex_arg() {
|
|
// Tests were also verified on Wolfram Alpha
|
|
mut c1 := cmplx.complex(5,7)
|
|
mut c2 := cmplx.complex(2.152033,0.950547)
|
|
mut result := c1.arg()
|
|
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
|
assert tst_res(result.str(), '0.950547')
|
|
c1 = cmplx.complex(-3,4)
|
|
c2 = cmplx.complex(1.609438,2.214297)
|
|
result = c1.arg()
|
|
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
|
assert tst_res(result.str(), '2.214297')
|
|
c1 = cmplx.complex(-1,-2)
|
|
c2 = cmplx.complex(0.804719,-2.034444)
|
|
result = c1.arg()
|
|
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
|
assert tst_res(result.str(), '-2.034444')
|
|
}
|
|
|
|
fn test_complex_log() {
|
|
// Tests were also verified on Wolfram Alpha
|
|
mut c1 := cmplx.complex(5,7)
|
|
mut b1 := cmplx.complex(-6,-2)
|
|
mut c2 := cmplx.complex(0.232873,-1.413175)
|
|
mut result := c1.log(b1)
|
|
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
|
assert result.str().eq(c2.str())
|
|
c1 = cmplx.complex(-3,4)
|
|
b1 = cmplx.complex(3,-1)
|
|
c2 = cmplx.complex(0.152198,-0.409312)
|
|
result = c1.log(b1)
|
|
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
|
assert result.str().eq(c2.str())
|
|
c1 = cmplx.complex(-1,-2)
|
|
b1 = cmplx.complex(0,9)
|
|
c2 = cmplx.complex(-0.298243,1.197981)
|
|
result = c1.log(b1)
|
|
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
|
assert result.str().eq(c2.str())
|
|
}
|
|
|
|
fn test_complex_cpow() {
|
|
// Tests were also verified on Wolfram Alpha
|
|
mut c1 := cmplx.complex(5,7)
|
|
mut r1 := cmplx.complex(2,2)
|
|
mut c2 := cmplx.complex(11.022341,-0.861785)
|
|
mut result := c1.cpow(r1)
|
|
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
|
assert result.str().eq(c2.str())
|
|
c1 = cmplx.complex(-3,4)
|
|
r1 = cmplx.complex(-4,-2)
|
|
c2 = cmplx.complex(0.118303,0.063148)
|
|
result = c1.cpow(r1)
|
|
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
|
assert result.str().eq(c2.str())
|
|
c1 = cmplx.complex(-1,-2)
|
|
r1 = cmplx.complex(8,-9)
|
|
c2 = cmplx.complex(-0.000000,0.000007)
|
|
result = c1.cpow(r1)
|
|
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
|
assert result.str().eq(c2.str())
|
|
}
|
|
|
|
fn test_complex_sin() {
|
|
// Tests were also verified on Wolfram Alpha
|
|
mut c1 := cmplx.complex(5,7)
|
|
mut c2 := cmplx.complex(-525.794515,155.536550)
|
|
mut result := c1.sin()
|
|
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
|
assert result.str().eq(c2.str())
|
|
c1 = cmplx.complex(-3,4)
|
|
c2 = cmplx.complex(-3.853738,-27.016813)
|
|
result = c1.sin()
|
|
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
|
assert result.str().eq(c2.str())
|
|
c1 = cmplx.complex(-1,-2)
|
|
c2 = cmplx.complex(-3.165779,-1.959601)
|
|
result = c1.sin()
|
|
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
|
assert result.str().eq(c2.str())
|
|
}
|
|
|
|
fn test_complex_cos() {
|
|
// Tests were also verified on Wolfram Alpha
|
|
mut c1 := cmplx.complex(5,7)
|
|
mut c2 := cmplx.complex(155.536809,525.793641)
|
|
mut result := c1.cos()
|
|
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
|
assert result.str().eq(c2.str())
|
|
c1 = cmplx.complex(-3,4)
|
|
c2 = cmplx.complex(-27.034946,3.851153)
|
|
result = c1.cos()
|
|
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
|
assert result.str().eq(c2.str())
|
|
c1 = cmplx.complex(-1,-2)
|
|
c2 = cmplx.complex(2.032723,-3.051898)
|
|
result = c1.cos()
|
|
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
|
assert result.str().eq(c2.str())
|
|
}
|
|
|
|
fn test_complex_tan() {
|
|
// Tests were also verified on Wolfram Alpha
|
|
mut c1 := cmplx.complex(5,7)
|
|
mut c2 := cmplx.complex(-0.000001,1.000001)
|
|
mut result := c1.tan()
|
|
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
|
assert result.str().eq(c2.str())
|
|
c1 = cmplx.complex(-3,4)
|
|
c2 = cmplx.complex(0.000187,0.999356)
|
|
result = c1.tan()
|
|
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
|
assert result.str().eq(c2.str())
|
|
c1 = cmplx.complex(-1,-2)
|
|
c2 = cmplx.complex(-0.033813,-1.014794)
|
|
result = c1.tan()
|
|
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
|
assert result.str().eq(c2.str())
|
|
}
|
|
|
|
fn test_complex_cot() {
|
|
// Tests were also verified on Wolfram Alpha
|
|
mut c1 := cmplx.complex(5,7)
|
|
mut c2 := cmplx.complex(-0.000001,-0.999999)
|
|
mut result := c1.cot()
|
|
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
|
assert result.str().eq(c2.str())
|
|
c1 = cmplx.complex(-3,4)
|
|
c2 = cmplx.complex(0.000188,-1.000644)
|
|
result = c1.cot()
|
|
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
|
assert result.str().eq(c2.str())
|
|
c1 = cmplx.complex(-1,-2)
|
|
c2 = cmplx.complex(-0.032798,0.984329)
|
|
result = c1.cot()
|
|
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
|
assert result.str().eq(c2.str())
|
|
}
|
|
|
|
fn test_complex_sec() {
|
|
// Tests were also verified on Wolfram Alpha
|
|
mut c1 := cmplx.complex(5,7)
|
|
mut c2 := cmplx.complex(0.000517,-0.001749)
|
|
mut result := c1.sec()
|
|
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
|
assert result.str().eq(c2.str())
|
|
c1 = cmplx.complex(-3,4)
|
|
c2 = cmplx.complex(-0.036253,-0.005164)
|
|
result = c1.sec()
|
|
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
|
assert result.str().eq(c2.str())
|
|
c1 = cmplx.complex(-1,-2)
|
|
c2 = cmplx.complex(0.151176,0.226974)
|
|
result = c1.sec()
|
|
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
|
assert result.str().eq(c2.str())
|
|
}
|
|
|
|
fn test_complex_csc() {
|
|
// Tests were also verified on Wolfram Alpha
|
|
mut c1 := cmplx.complex(5,7)
|
|
mut c2 := cmplx.complex(-0.001749,-0.000517)
|
|
mut result := c1.csc()
|
|
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
|
assert result.str().eq(c2.str())
|
|
c1 = cmplx.complex(-3,4)
|
|
c2 = cmplx.complex(-0.005174,0.036276)
|
|
result = c1.csc()
|
|
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
|
assert result.str().eq(c2.str())
|
|
c1 = cmplx.complex(-1,-2)
|
|
c2 = cmplx.complex(-0.228375,0.141363)
|
|
result = c1.csc()
|
|
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
|
assert result.str().eq(c2.str())
|
|
}
|
|
|
|
fn test_complex_asin() {
|
|
// Tests were also verified on Wolfram Alpha
|
|
mut c1 := cmplx.complex(5,7)
|
|
mut c2 := cmplx.complex(0.617064,2.846289)
|
|
mut result := c1.asin()
|
|
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
|
assert result.str().eq(c2.str())
|
|
c1 = cmplx.complex(-3,4)
|
|
c2 = cmplx.complex(-0.633984,2.305509)
|
|
result = c1.asin()
|
|
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
|
assert result.str().eq(c2.str())
|
|
c1 = cmplx.complex(-1,-2)
|
|
c2 = cmplx.complex(-0.427079,-1.528571)
|
|
result = c1.asin()
|
|
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
|
assert result.str().eq(c2.str())
|
|
}
|
|
|
|
fn test_complex_acos() {
|
|
// Tests were also verified on Wolfram Alpha
|
|
mut c1 := cmplx.complex(5,7)
|
|
mut c2 := cmplx.complex(0.953732,-2.846289)
|
|
mut result := c1.acos()
|
|
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
|
assert result.str().eq(c2.str())
|
|
c1 = cmplx.complex(-3,4)
|
|
c2 = cmplx.complex(2.204780,-2.305509)
|
|
result = c1.acos()
|
|
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
|
assert result.str().eq(c2.str())
|
|
c1 = cmplx.complex(-1,-2)
|
|
c2 = cmplx.complex(1.997875,1.528571)
|
|
result = c1.acos()
|
|
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
|
assert result.str().eq(c2.str())
|
|
}
|
|
|
|
fn test_complex_atan() {
|
|
// Tests were also verified on Wolfram Alpha
|
|
mut c1 := cmplx.complex(5,7)
|
|
mut c2 := cmplx.complex(1.502727,0.094441)
|
|
mut result := c1.atan()
|
|
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
|
assert result.str().eq(c2.str())
|
|
c1 = cmplx.complex(-3,4)
|
|
c2 = cmplx.complex(-1.448307,0.158997)
|
|
result = c1.atan()
|
|
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
|
assert result.str().eq(c2.str())
|
|
c1 = cmplx.complex(-1,-2)
|
|
c2 = cmplx.complex(-1.338973,-0.402359)
|
|
result = c1.atan()
|
|
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
|
assert result.str().eq(c2.str())
|
|
}
|
|
|
|
fn test_complex_acot() {
|
|
// Tests were also verified on Wolfram Alpha
|
|
mut c1 := cmplx.complex(5,7)
|
|
mut c2 := cmplx.complex(0.068069,-0.094441)
|
|
mut result := c1.acot()
|
|
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
|
assert result.str().eq(c2.str())
|
|
c1 = cmplx.complex(-3,4)
|
|
c2 = cmplx.complex(-0.122489,-0.158997)
|
|
result = c1.acot()
|
|
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
|
assert result.str().eq(c2.str())
|
|
c1 = cmplx.complex(-1,-2)
|
|
c2 = cmplx.complex(-0.231824,0.402359)
|
|
result = c1.acot()
|
|
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
|
assert result.str().eq(c2.str())
|
|
}
|
|
|
|
fn test_complex_asec() {
|
|
// Tests were also verified on Wolfram Alpha
|
|
mut c1 := cmplx.complex(5,7)
|
|
mut c2 := cmplx.complex(1.503480,0.094668)
|
|
mut result := c1.asec()
|
|
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
|
assert result.str().eq(c2.str())
|
|
c1 = cmplx.complex(-3,4)
|
|
c2 = cmplx.complex(1.689547,0.160446)
|
|
result = c1.asec()
|
|
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
|
assert result.str().eq(c2.str())
|
|
c1 = cmplx.complex(-1,-2)
|
|
c2 = cmplx.complex(1.757114,-0.396568)
|
|
result = c1.asec()
|
|
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
|
assert result.str().eq(c2.str())
|
|
}
|
|
|
|
fn test_complex_acsc() {
|
|
// Tests were also verified on Wolfram Alpha
|
|
mut c1 := cmplx.complex(5,7)
|
|
mut c2 := cmplx.complex(0.067317,-0.094668)
|
|
mut result := c1.acsc()
|
|
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
|
assert result.str().eq(c2.str())
|
|
c1 = cmplx.complex(-3,4)
|
|
c2 = cmplx.complex(-0.118751,-0.160446)
|
|
result = c1.acsc()
|
|
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
|
assert result.str().eq(c2.str())
|
|
c1 = cmplx.complex(-1,-2)
|
|
c2 = cmplx.complex(-0.186318,0.396568)
|
|
result = c1.acsc()
|
|
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
|
assert result.str().eq(c2.str())
|
|
}
|
|
|
|
fn test_complex_sinh() {
|
|
// Tests were also verified on Wolfram Alpha
|
|
mut c1 := cmplx.complex(5,7)
|
|
mut c2 := cmplx.complex(55.941968,48.754942)
|
|
mut result := c1.sinh()
|
|
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
|
assert result.str().eq(c2.str())
|
|
c1 = cmplx.complex(-3,4)
|
|
c2 = cmplx.complex(6.548120,-7.619232)
|
|
result = c1.sinh()
|
|
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
|
assert result.str().eq(c2.str())
|
|
c1 = cmplx.complex(-1,-2)
|
|
c2 = cmplx.complex(0.489056,-1.403119)
|
|
result = c1.sinh()
|
|
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
|
assert result.str().eq(c2.str())
|
|
}
|
|
|
|
fn test_complex_cosh() {
|
|
// Tests were also verified on Wolfram Alpha
|
|
mut c1 := cmplx.complex(5,7)
|
|
mut c2 := cmplx.complex(55.947047,48.750515)
|
|
mut result := c1.cosh()
|
|
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
|
assert result.str().eq(c2.str())
|
|
c1 = cmplx.complex(-3,4)
|
|
c2 = cmplx.complex(-6.580663,7.581553)
|
|
result = c1.cosh()
|
|
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
|
assert result.str().eq(c2.str())
|
|
c1 = cmplx.complex(-1,-2)
|
|
c2 = cmplx.complex(-0.642148,1.068607)
|
|
result = c1.cosh()
|
|
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
|
assert result.str().eq(c2.str())
|
|
}
|
|
|
|
fn test_complex_tanh() {
|
|
// Tests were also verified on Wolfram Alpha
|
|
mut c1 := cmplx.complex(5,7)
|
|
mut c2 := cmplx.complex(0.999988,0.000090)
|
|
mut result := c1.tanh()
|
|
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
|
assert result.str().eq(c2.str())
|
|
c1 = cmplx.complex(-3,4)
|
|
c2 = cmplx.complex(-1.000710,0.004908)
|
|
result = c1.tanh()
|
|
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
|
assert result.str().eq(c2.str())
|
|
c1 = cmplx.complex(-1,-2)
|
|
c2 = cmplx.complex(-1.166736,0.243458)
|
|
result = c1.tanh()
|
|
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
|
assert result.str().eq(c2.str())
|
|
}
|
|
|
|
fn test_complex_coth() {
|
|
// Tests were also verified on Wolfram Alpha
|
|
mut c1 := cmplx.complex(5,7)
|
|
mut c2 := cmplx.complex(1.000012,-0.000090)
|
|
mut result := c1.coth()
|
|
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
|
assert result.str().eq(c2.str())
|
|
c1 = cmplx.complex(-3,4)
|
|
c2 = cmplx.complex(-0.999267,-0.004901)
|
|
result = c1.coth()
|
|
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
|
assert result.str().eq(c2.str())
|
|
c1 = cmplx.complex(-1,-2)
|
|
c2 = cmplx.complex(-0.821330,-0.171384)
|
|
result = c1.coth()
|
|
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
|
assert result.str().eq(c2.str())
|
|
}
|
|
|
|
fn test_complex_sech() {
|
|
// Tests were also verified on Wolfram Alpha
|
|
mut c1 := cmplx.complex(5,7)
|
|
mut c2 := cmplx.complex(0.010160,-0.008853)
|
|
mut result := c1.sech()
|
|
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
|
assert result.str().eq(c2.str())
|
|
c1 = cmplx.complex(-3,4)
|
|
c2 = cmplx.complex(-0.065294,-0.075225)
|
|
result = c1.sech()
|
|
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
|
assert result.str().eq(c2.str())
|
|
c1 = cmplx.complex(-1,-2)
|
|
c2 = cmplx.complex(-0.413149,-0.687527)
|
|
result = c1.sech()
|
|
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
|
assert result.str().eq(c2.str())
|
|
}
|
|
|
|
fn test_complex_csch() {
|
|
// Tests were also verified on Wolfram Alpha
|
|
mut c1 := cmplx.complex(5,7)
|
|
mut c2 := cmplx.complex(0.010159,-0.008854)
|
|
mut result := c1.csch()
|
|
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
|
assert result.str().eq(c2.str())
|
|
c1 = cmplx.complex(-3,4)
|
|
c2 = cmplx.complex(0.064877,0.075490)
|
|
result = c1.csch()
|
|
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
|
assert result.str().eq(c2.str())
|
|
c1 = cmplx.complex(-1,-2)
|
|
c2 = cmplx.complex(0.221501,0.635494)
|
|
result = c1.csch()
|
|
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
|
assert result.str().eq(c2.str())
|
|
}
|
|
|
|
fn test_complex_asinh() {
|
|
// Tests were also verified on Wolfram Alpha
|
|
mut c1 := cmplx.complex(5,7)
|
|
mut c2 := cmplx.complex(2.844098,0.947341)
|
|
mut result := c1.asinh()
|
|
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
|
assert result.str().eq(c2.str())
|
|
c1 = cmplx.complex(-3,4)
|
|
c2 = cmplx.complex(-2.299914,0.917617)
|
|
result = c1.asinh()
|
|
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
|
assert result.str().eq(c2.str())
|
|
c1 = cmplx.complex(-1,-2)
|
|
c2 = cmplx.complex(-1.469352,-1.063440)
|
|
result = c1.asinh()
|
|
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
|
assert result.str().eq(c2.str())
|
|
}
|
|
|
|
fn test_complex_acosh() {
|
|
// Tests were also verified on Wolfram Alpha
|
|
mut c1 := cmplx.complex(5,7)
|
|
mut c2 := cmplx.complex(2.846289,0.953732)
|
|
mut result := c1.acosh()
|
|
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
|
assert result.str().eq(c2.str())
|
|
c1 = cmplx.complex(-3,4)
|
|
c2 = cmplx.complex(2.305509,2.204780)
|
|
result = c1.acosh()
|
|
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
|
assert result.str().eq(c2.str())
|
|
c1 = cmplx.complex(-1,-2)
|
|
c2 = cmplx.complex(1.528571,-1.997875)
|
|
result = c1.acosh()
|
|
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
|
assert result.str().eq(c2.str())
|
|
}
|
|
|
|
fn test_complex_atanh() {
|
|
// Tests were also verified on Wolfram Alpha
|
|
mut c1 := cmplx.complex(5,7)
|
|
mut c2 := cmplx.complex(0.067066,1.476056)
|
|
mut result := c1.atanh()
|
|
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
|
assert result.str().eq(c2.str())
|
|
c1 = cmplx.complex(-3,4)
|
|
c2 = cmplx.complex(-0.117501,1.409921)
|
|
result = c1.atanh()
|
|
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
|
assert result.str().eq(c2.str())
|
|
c1 = cmplx.complex(-1,-2)
|
|
c2 = cmplx.complex(-0.173287,-1.178097)
|
|
result = c1.atanh()
|
|
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
|
assert result.str().eq(c2.str())
|
|
}
|
|
|
|
fn test_complex_acoth() {
|
|
// Tests were also verified on Wolfram Alpha
|
|
mut c1 := cmplx.complex(5,7)
|
|
mut c2 := cmplx.complex(0.067066,-0.094740)
|
|
mut result := c1.acoth()
|
|
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
|
assert result.str().eq(c2.str())
|
|
c1 = cmplx.complex(-3,4)
|
|
c2 = cmplx.complex(-0.117501,-0.160875)
|
|
result = c1.acoth()
|
|
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
|
assert result.str().eq(c2.str())
|
|
c1 = cmplx.complex(-1,-2)
|
|
c2 = cmplx.complex(-0.173287,0.392699)
|
|
result = c1.acoth()
|
|
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
|
assert result.str().eq(c2.str())
|
|
}
|
|
|
|
// fn test_complex_asech() {
|
|
// // Tests were also verified on Wolfram Alpha
|
|
// mut c1 := cmplx.complex(5,7)
|
|
// mut c2 := cmplx.complex(0.094668,-1.503480)
|
|
// mut result := c1.asech()
|
|
// // Some issue with precision comparison in f64 using == operator hence serializing to string
|
|
// assert result.str().eq(c2.str())
|
|
// c1 = cmplx.complex(-3,4)
|
|
// c2 = cmplx.complex(0.160446,-1.689547)
|
|
// result = c1.asech()
|
|
// // Some issue with precision comparison in f64 using == operator hence serializing to string
|
|
// assert result.str().eq(c2.str())
|
|
// c1 = cmplx.complex(-1,-2)
|
|
// c2 = cmplx.complex(0.396568,1.757114)
|
|
// result = c1.asech()
|
|
// // Some issue with precision comparison in f64 using == operator hence serializing to string
|
|
// assert result.str().eq(c2.str())
|
|
// }
|
|
|
|
fn test_complex_acsch() {
|
|
// Tests were also verified on Wolfram Alpha
|
|
mut c1 := cmplx.complex(5,7)
|
|
mut c2 := cmplx.complex(0.067819,-0.094518)
|
|
mut result := c1.acsch()
|
|
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
|
assert result.str().eq(c2.str())
|
|
c1 = cmplx.complex(-3,4)
|
|
c2 = cmplx.complex(-0.121246,-0.159507)
|
|
result = c1.acsch()
|
|
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
|
assert result.str().eq(c2.str())
|
|
c1 = cmplx.complex(-1,-2)
|
|
c2 = cmplx.complex(-0.215612,0.401586)
|
|
result = c1.acsch()
|
|
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
|
assert result.str().eq(c2.str())
|
|
}
|
|
|
|
fn test_complex_re_im() {
|
|
c := cmplx.complex(2.1, 9.05)
|
|
assert c.re == 2.1
|
|
assert c.im == 9.05
|
|
}
|