86 lines
		
	
	
		
			2.6 KiB
		
	
	
	
		
			V
		
	
	
			
		
		
	
	
			86 lines
		
	
	
		
			2.6 KiB
		
	
	
	
		
			V
		
	
	
// Copyright (c) 2019-2021 Alexander Medvednikov. All rights reserved.
 | 
						|
// Use of this source code is governed by an MIT license
 | 
						|
// that can be found in the LICENSE file.
 | 
						|
module dist
 | 
						|
 | 
						|
import math
 | 
						|
import rand
 | 
						|
 | 
						|
fn check_probability_range(p f64) {
 | 
						|
	if p < 0 || p > 1 {
 | 
						|
		panic('$p is not a valid probability value.')
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
// bernoulli returns true with a probability p. Note that 0 <= p <= 1.
 | 
						|
pub fn bernoulli(p f64) bool {
 | 
						|
	check_probability_range(p)
 | 
						|
	return rand.f64() <= p
 | 
						|
}
 | 
						|
 | 
						|
// binomial returns the number of successful trials out of n when the
 | 
						|
// probability of success for each trial is p.
 | 
						|
pub fn binomial(n int, p f64) int {
 | 
						|
	check_probability_range(p)
 | 
						|
	mut count := 0
 | 
						|
	for _ in 0 .. n {
 | 
						|
		if bernoulli(p) {
 | 
						|
			count++
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return count
 | 
						|
}
 | 
						|
 | 
						|
// Configuration struct for the `normal_pair` function. The default value for
 | 
						|
// `mu` is 0 and the default value for `sigma` is 1.
 | 
						|
pub struct NormalConfigStruct {
 | 
						|
	mu    f64 = 0.0
 | 
						|
	sigma f64 = 1.0
 | 
						|
}
 | 
						|
 | 
						|
// normal_pair returns a pair of normally distributed random numbers with the mean mu
 | 
						|
// and standard deviation sigma. If not specified, mu is 0 and sigma is 1. Intended usage is
 | 
						|
// `x, y := normal_pair(mu: mean, sigma: stdev)`, or `x, y := normal_pair()`.
 | 
						|
pub fn normal_pair(config NormalConfigStruct) (f64, f64) {
 | 
						|
	if config.sigma <= 0 {
 | 
						|
		panic('The standard deviation has to be positive.')
 | 
						|
	}
 | 
						|
	// This is an implementation of the Marsaglia polar method
 | 
						|
	// See: https://doi.org/10.1137%2F1006063
 | 
						|
	// Also: https://en.wikipedia.org/wiki/Marsaglia_polar_method
 | 
						|
	for {
 | 
						|
		u := rand.f64_in_range(-1, 1)
 | 
						|
		v := rand.f64_in_range(-1, 1)
 | 
						|
 | 
						|
		s := u * u + v * v
 | 
						|
		if s >= 1 || s == 0 {
 | 
						|
			continue
 | 
						|
		}
 | 
						|
		t := math.sqrt(-2 * math.log(s) / s)
 | 
						|
		x := config.mu + config.sigma * t * u
 | 
						|
		y := config.mu + config.sigma * t * v
 | 
						|
		return x, y
 | 
						|
	}
 | 
						|
	return config.mu, config.mu
 | 
						|
}
 | 
						|
 | 
						|
// normal returns a normally distributed random number with the mean mu and standard deviation
 | 
						|
// sigma. If not specified, mu is 0 and sigma is 1. Intended usage is
 | 
						|
// `x := normal(mu: mean, sigma: etdev)` or `x := normal()`.
 | 
						|
// **NOTE:** If you are generating a lot of normal variates, use `the normal_pair` function
 | 
						|
// instead. This function discards one of the two variates generated by the `normal_pair` function.
 | 
						|
pub fn normal(config NormalConfigStruct) f64 {
 | 
						|
	x, _ := normal_pair(config)
 | 
						|
	return x
 | 
						|
}
 | 
						|
 | 
						|
// exponential returns an exponentially distributed random number with the rate paremeter
 | 
						|
// lambda. It is expected that lambda is positive.
 | 
						|
pub fn exponential(lambda f64) f64 {
 | 
						|
	if lambda <= 0 {
 | 
						|
		panic('The rate (lambda) must be positive.')
 | 
						|
	}
 | 
						|
	// Use the inverse transform sampling method
 | 
						|
	return -math.log(rand.f64()) / lambda
 | 
						|
}
 |