573 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			V
		
	
	
			
		
		
	
	
			573 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			V
		
	
	
module arrays
 | 
						|
 | 
						|
// Common arrays functions:
 | 
						|
// - min / max - return the value of the minumum / maximum
 | 
						|
// - idx_min / idx_max - return the index of the first minumum / maximum
 | 
						|
// - merge - combine two sorted arrays and maintain sorted order
 | 
						|
// - chunk - chunk array to arrays with n elements
 | 
						|
// - window - get snapshots of the window of the given size sliding along array with the given step, where each snapshot is an array
 | 
						|
// - group - merge two arrays by interleaving e.g. arrays.group([1,3,5], [2,4,6]) => [[1,2],[3,4],[5,6]]
 | 
						|
// - flatten - reduce dimensionality of array by one. e.g. arrays.flatten([[1,2],[3,4],[5,6]]) => [1,2,3,4,5,6]
 | 
						|
 | 
						|
// min returns the minimum value in the array
 | 
						|
// Example: arrays.min([1,2,3,0,9]) // => 0
 | 
						|
pub fn min<T>(a []T) ?T {
 | 
						|
	if a.len == 0 {
 | 
						|
		return error('.min called on an empty array')
 | 
						|
	}
 | 
						|
	mut val := a[0]
 | 
						|
	for e in a {
 | 
						|
		if e < val {
 | 
						|
			val = e
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return val
 | 
						|
}
 | 
						|
 | 
						|
// max returns the maximum the maximum value in the array
 | 
						|
// Example: arrays.max([1,2,3,0,9]) // => 9
 | 
						|
pub fn max<T>(a []T) ?T {
 | 
						|
	if a.len == 0 {
 | 
						|
		return error('.max called on an empty array')
 | 
						|
	}
 | 
						|
	mut val := a[0]
 | 
						|
	for e in a {
 | 
						|
		if e > val {
 | 
						|
			val = e
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return val
 | 
						|
}
 | 
						|
 | 
						|
// idx_min returns the index of the minimum value in the array
 | 
						|
// Example: arrays.idx_min([1,2,3,0,9]) // => 3
 | 
						|
pub fn idx_min<T>(a []T) ?int {
 | 
						|
	if a.len == 0 {
 | 
						|
		return error('.idx_min called on an empty array')
 | 
						|
	}
 | 
						|
	mut idx := 0
 | 
						|
	mut val := a[0]
 | 
						|
	for i, e in a {
 | 
						|
		if e < val {
 | 
						|
			val = e
 | 
						|
			idx = i
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return idx
 | 
						|
}
 | 
						|
 | 
						|
// idx_max returns the index of the maximum value in the array
 | 
						|
// Example: arrays.idx_max([1,2,3,0,9]) // => 4
 | 
						|
pub fn idx_max<T>(a []T) ?int {
 | 
						|
	if a.len == 0 {
 | 
						|
		return error('.idx_max called on an empty array')
 | 
						|
	}
 | 
						|
	mut idx := 0
 | 
						|
	mut val := a[0]
 | 
						|
	for i, e in a {
 | 
						|
		if e > val {
 | 
						|
			val = e
 | 
						|
			idx = i
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return idx
 | 
						|
}
 | 
						|
 | 
						|
// merge two sorted arrays (ascending) and maintain sorted order
 | 
						|
// Example: arrays.merge([1,3,5,7], [2,4,6,8]) // => [1,2,3,4,5,6,7,8]
 | 
						|
[direct_array_access]
 | 
						|
pub fn merge<T>(a []T, b []T) []T {
 | 
						|
	mut m := []T{len: a.len + b.len}
 | 
						|
	mut ia := 0
 | 
						|
	mut ib := 0
 | 
						|
	mut j := 0
 | 
						|
	// TODO efficient approach to merge_desc where: a[ia] >= b[ib]
 | 
						|
	for ia < a.len && ib < b.len {
 | 
						|
		if a[ia] <= b[ib] {
 | 
						|
			m[j] = a[ia]
 | 
						|
			ia++
 | 
						|
		} else {
 | 
						|
			m[j] = b[ib]
 | 
						|
			ib++
 | 
						|
		}
 | 
						|
		j++
 | 
						|
	}
 | 
						|
	// a leftovers
 | 
						|
	for ia < a.len {
 | 
						|
		m[j] = a[ia]
 | 
						|
		ia++
 | 
						|
		j++
 | 
						|
	}
 | 
						|
	// b leftovers
 | 
						|
	for ib < b.len {
 | 
						|
		m[j] = b[ib]
 | 
						|
		ib++
 | 
						|
		j++
 | 
						|
	}
 | 
						|
	return m
 | 
						|
}
 | 
						|
 | 
						|
// group n arrays into a single array of arrays with n elements
 | 
						|
//
 | 
						|
// This function is analogous to the "zip" function of other languages.
 | 
						|
// To fully interleave two arrays, follow this function with a call to `flatten`.
 | 
						|
//
 | 
						|
// NOTE: An error will be generated if the type annotation is omitted.
 | 
						|
// Example: arrays.group<int>([1,2,3],[4,5,6]) // => [[1, 4], [2, 5], [3, 6]]
 | 
						|
pub fn group<T>(lists ...[]T) [][]T {
 | 
						|
	mut length := if lists.len > 0 { lists[0].len } else { 0 }
 | 
						|
	// calculate length of output by finding shortest input array
 | 
						|
	for ndx in 1 .. lists.len {
 | 
						|
		if lists[ndx].len < length {
 | 
						|
			length = lists[ndx].len
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	if length > 0 {
 | 
						|
		mut arr := [][]T{cap: length}
 | 
						|
		// append all combined arrays into the resultant array
 | 
						|
		for ndx in 0 .. length {
 | 
						|
			mut grouped := []T{cap: lists.len}
 | 
						|
			// combine each list item for the ndx position into one array
 | 
						|
			for list_ndx in 0 .. lists.len {
 | 
						|
				grouped << lists[list_ndx][ndx]
 | 
						|
			}
 | 
						|
			arr << grouped
 | 
						|
		}
 | 
						|
		return arr
 | 
						|
	}
 | 
						|
 | 
						|
	return [][]T{}
 | 
						|
}
 | 
						|
 | 
						|
// chunk array into a single array of arrays where each element is the next `size` elements of the original
 | 
						|
// Example: arrays.chunk([1, 2, 3, 4, 5, 6, 7, 8, 9], 2)) // => [[1, 2], [3, 4], [5, 6], [7, 8], [9]]
 | 
						|
pub fn chunk<T>(list []T, size int) [][]T {
 | 
						|
	// allocate chunk array
 | 
						|
	mut chunks := [][]T{cap: list.len / size + if list.len % size == 0 { 0 } else { 1 }}
 | 
						|
 | 
						|
	for i := 0; true; {
 | 
						|
		// check chunk size is greater than remaining element size
 | 
						|
		if list.len < i + size {
 | 
						|
			// check if there's no more element to chunk
 | 
						|
			if list.len <= i {
 | 
						|
				break
 | 
						|
			}
 | 
						|
 | 
						|
			chunks << list[i..]
 | 
						|
 | 
						|
			break
 | 
						|
		}
 | 
						|
 | 
						|
		chunks << list[i..i + size]
 | 
						|
		i += size
 | 
						|
	}
 | 
						|
 | 
						|
	return chunks
 | 
						|
}
 | 
						|
 | 
						|
pub struct WindowAttribute {
 | 
						|
	size int
 | 
						|
	step int = 1
 | 
						|
}
 | 
						|
 | 
						|
// get snapshots of the window of the given size sliding along array with the given step, where each snapshot is an array.
 | 
						|
// - `size` - snapshot size
 | 
						|
// - `step` - gap size between each snapshot, default is 1.
 | 
						|
//
 | 
						|
// Example: arrays.window([1, 2, 3, 4], size: 2) // => [[1, 2], [2, 3], [3, 4]]
 | 
						|
// Example: arrays.window([1, 2, 3, 4, 5, 6, 7, 8, 9, 10], size: 3, step: 2) // => [[1, 2, 3], [3, 4, 5], [5, 6, 7], [7, 8, 9]]
 | 
						|
pub fn window<T>(list []T, attr WindowAttribute) [][]T {
 | 
						|
	// allocate snapshot array
 | 
						|
	mut windows := [][]T{cap: list.len - attr.size + 1}
 | 
						|
 | 
						|
	for i := 0; true; {
 | 
						|
		// check remaining elements size is less than snapshot size
 | 
						|
		if list.len < i + attr.size {
 | 
						|
			break
 | 
						|
		}
 | 
						|
 | 
						|
		windows << list[i..i + attr.size]
 | 
						|
		i += attr.step
 | 
						|
	}
 | 
						|
 | 
						|
	return windows
 | 
						|
}
 | 
						|
 | 
						|
// sum up array, return nothing when array has no elements
 | 
						|
//
 | 
						|
// NOTICE: currently V has bug that cannot make sum function takes custom struct with + operator overloaded
 | 
						|
// which means you can only pass array of numbers for now.
 | 
						|
// TODO: Fix generic operator overloading detection issue.
 | 
						|
// Example: arrays.sum<int>([1, 2, 3, 4, 5])? // => 15
 | 
						|
pub fn sum<T>(list []T) ?T {
 | 
						|
	if list.len == 0 {
 | 
						|
		return error('Cannot sum up array of nothing.')
 | 
						|
	} else {
 | 
						|
		mut head := list[0]
 | 
						|
 | 
						|
		for i, e in list {
 | 
						|
			if i == 0 {
 | 
						|
				continue
 | 
						|
			} else {
 | 
						|
				head += e
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
		return head
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
// reduce sets `acc = list[0]`, then successively calls `acc = reduce_op(acc, elem)` for each remaining element in `list`.
 | 
						|
// returns the accumulated value in `acc`.
 | 
						|
// returns an error if the array is empty.
 | 
						|
// See also: [fold](#fold).
 | 
						|
// Example: arrays.reduce([1, 2, 3, 4, 5], fn (t1 int, t2 int) int { return t1 * t2 })? // => 120
 | 
						|
pub fn reduce<T>(list []T, reduce_op fn (t1 T, t2 T) T) ?T {
 | 
						|
	if list.len == 0 {
 | 
						|
		return error('Cannot reduce array of nothing.')
 | 
						|
	} else {
 | 
						|
		mut value := list[0]
 | 
						|
 | 
						|
		for i, e in list {
 | 
						|
			if i == 0 {
 | 
						|
				continue
 | 
						|
			} else {
 | 
						|
				value = reduce_op(value, e)
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
		return value
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
// fold sets `acc = init`, then successively calls `acc = fold_op(acc, elem)` for each element in `list`.
 | 
						|
// returns `acc`.
 | 
						|
// Example:
 | 
						|
// ```v
 | 
						|
// // Sum the length of each string in an array
 | 
						|
// a := ['Hi', 'all']
 | 
						|
// r := arrays.fold<string, int>(a, 0,
 | 
						|
// 	fn (r int, t string) int { return r + t.len })
 | 
						|
// assert r == 5
 | 
						|
// ```
 | 
						|
pub fn fold<T, R>(list []T, init R, fold_op fn (r R, t T) R) R {
 | 
						|
	mut value := init
 | 
						|
 | 
						|
	for e in list {
 | 
						|
		value = fold_op(value, e)
 | 
						|
	}
 | 
						|
 | 
						|
	return value
 | 
						|
}
 | 
						|
 | 
						|
// flattens n + 1 dimensional array into n dimensional array
 | 
						|
// Example: arrays.flatten<int>([[1, 2, 3], [4, 5]]) // => [1, 2, 3, 4, 5]
 | 
						|
pub fn flatten<T>(list [][]T) []T {
 | 
						|
	// calculate required capacity
 | 
						|
	mut required_size := 0
 | 
						|
 | 
						|
	for e1 in list {
 | 
						|
		for _ in e1 {
 | 
						|
			required_size += 1
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	// allocate flattened array
 | 
						|
	mut result := []T{cap: required_size}
 | 
						|
 | 
						|
	for e1 in list {
 | 
						|
		for e2 in e1 {
 | 
						|
			result << e2
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	return result
 | 
						|
}
 | 
						|
 | 
						|
// group_by groups together elements, for which the `grouping_op` callback produced the same result.
 | 
						|
// Example: arrays.group_by<int, string>(['H', 'el', 'lo'], fn (v string) int { return v.len }) // => {1: ['H'], 2: ['el', 'lo']}
 | 
						|
pub fn group_by<K, V>(list []V, grouping_op fn (v V) K) map[K][]V {
 | 
						|
	mut result := map[K][]V{}
 | 
						|
 | 
						|
	for v in list {
 | 
						|
		key := grouping_op(v)
 | 
						|
 | 
						|
		// check if key exists, if not, then create a new array with matched value, otherwise append.
 | 
						|
		if key in result {
 | 
						|
			result[key] << v
 | 
						|
		} else {
 | 
						|
			result[key] = [v]
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	return result
 | 
						|
}
 | 
						|
 | 
						|
// concatenate an array with an arbitrary number of additional values
 | 
						|
//
 | 
						|
// NOTE: if you have two arrays, you should simply use the `<<` operator directly
 | 
						|
// Example: arrays.concat([1, 2, 3], 4, 5, 6) == [1, 2, 3, 4, 5, 6] // => true
 | 
						|
// Example: arrays.concat([1, 2, 3], ...[4, 5, 6]) == [1, 2, 3, 4, 5, 6] // => true
 | 
						|
// Example: arr << [4, 5, 6] // does what you need if arr is mutable
 | 
						|
[deprecated]
 | 
						|
pub fn concat<T>(a []T, b ...T) []T {
 | 
						|
	mut m := []T{cap: a.len + b.len}
 | 
						|
 | 
						|
	m << a
 | 
						|
	m << b
 | 
						|
 | 
						|
	return m
 | 
						|
}
 | 
						|
 | 
						|
// returns the smallest element >= val, requires `arr` to be sorted
 | 
						|
// Example: arrays.lower_bound([2, 4, 6, 8], 3)? // => 4
 | 
						|
pub fn lower_bound<T>(arr []T, val T) ?T {
 | 
						|
	if arr.len == 0 {
 | 
						|
		return error('.lower_bound called on an empty array')
 | 
						|
	}
 | 
						|
	mut left, mut right := 0, arr.len - 1
 | 
						|
	for ; left <= right; {
 | 
						|
		idx := (left + right) / 2
 | 
						|
		elem := arr[idx]
 | 
						|
		if elem < val {
 | 
						|
			left = idx + 1
 | 
						|
		} else {
 | 
						|
			right = idx - 1
 | 
						|
		}
 | 
						|
	}
 | 
						|
	if left >= arr.len {
 | 
						|
		return error('')
 | 
						|
	} else {
 | 
						|
		return arr[left]
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
// returns the largest element <= val, requires `arr` to be sorted
 | 
						|
// Example: arrays.upper_bound([2, 4, 6, 8], 3)? // => 2
 | 
						|
pub fn upper_bound<T>(arr []T, val T) ?T {
 | 
						|
	if arr.len == 0 {
 | 
						|
		return error('.upper_bound called on an empty array')
 | 
						|
	}
 | 
						|
	mut left, mut right := 0, arr.len - 1
 | 
						|
	for ; left <= right; {
 | 
						|
		idx := (left + right) / 2
 | 
						|
		elem := arr[idx]
 | 
						|
		if elem > val {
 | 
						|
			right = idx - 1
 | 
						|
		} else {
 | 
						|
			left = idx + 1
 | 
						|
		}
 | 
						|
	}
 | 
						|
	if right < 0 {
 | 
						|
		return error('')
 | 
						|
	} else {
 | 
						|
		return arr[right]
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
// binary search, requires `arr` to be sorted, returns index of found item or error.
 | 
						|
// Binary searches on sorted lists can be faster than other array searches because at maximum
 | 
						|
// the algorithm only has to traverse log N elements
 | 
						|
// Example: arrays.binary_search([1, 2, 3, 4], 4) ? // => 3
 | 
						|
pub fn binary_search<T>(arr []T, target T) ?int {
 | 
						|
	mut left := 0
 | 
						|
	mut right := arr.len - 1
 | 
						|
	for ; left <= right; {
 | 
						|
		idx := (left + right) / 2
 | 
						|
		elem := arr[idx]
 | 
						|
		if elem == target {
 | 
						|
			return idx
 | 
						|
		}
 | 
						|
		if elem < target {
 | 
						|
			left = idx + 1
 | 
						|
		} else {
 | 
						|
			right = idx - 1
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return error('')
 | 
						|
}
 | 
						|
 | 
						|
// rotate_left rotates the array in-place such that the first `mid` elements of the array move to the end
 | 
						|
// while the last `arr.len - mid` elements move to the front. After calling `rotate_left`, the element
 | 
						|
// previously at index `mid` will become the first element in the array.
 | 
						|
// Example:
 | 
						|
// ```v
 | 
						|
// mut x := [1,2,3,4,5,6]
 | 
						|
// arrays.rotate_left(mut x, 2)
 | 
						|
// println(x) // [3, 4, 5, 6, 1, 2]
 | 
						|
// ```
 | 
						|
pub fn rotate_left<T>(mut arr []T, mid int) {
 | 
						|
	assert mid <= arr.len && mid >= 0
 | 
						|
	k := arr.len - mid
 | 
						|
	p := &T(arr.data)
 | 
						|
	unsafe {
 | 
						|
		ptr_rotate<T>(mid, &T(usize(voidptr(p)) + usize(sizeof(T)) * usize(mid)), k)
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
// rotate_right rotates the array in-place such that the first `arr.len - k` elements of the array move to the end
 | 
						|
// while the last `k` elements move to the front. After calling `rotate_right`, the element previously at index `arr.len - k`
 | 
						|
// will become the first element in the array.
 | 
						|
// Example:
 | 
						|
// ```v
 | 
						|
// mut x := [1,2,3,4,5,6]
 | 
						|
// arrays.rotate_right(mut x, 2)
 | 
						|
// println(x) // [5, 6, 1, 2, 3, 4]
 | 
						|
// ```
 | 
						|
pub fn rotate_right<T>(mut arr []T, k int) {
 | 
						|
	assert k <= arr.len && k >= 0
 | 
						|
	mid := arr.len - k
 | 
						|
	p := &T(arr.data)
 | 
						|
	unsafe {
 | 
						|
		ptr_rotate<T>(mid, &T(usize(voidptr(p)) + usize(sizeof(T)) * usize(mid)), k)
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
[unsafe]
 | 
						|
fn ptr_rotate<T>(left_ int, mid &T, right_ int) {
 | 
						|
	mut left := usize(left_)
 | 
						|
	mut right := usize(right_)
 | 
						|
	for {
 | 
						|
		delta := if left < right { left } else { right }
 | 
						|
 | 
						|
		if delta <= raw_array_cap<T>() {
 | 
						|
			break
 | 
						|
		}
 | 
						|
		unsafe {
 | 
						|
			swap_nonoverlapping<T>(&T(usize(voidptr(mid)) - left * usize(sizeof(T))),
 | 
						|
				&T(usize(voidptr(mid)) + usize(right - delta) * usize(sizeof(T))), int(delta))
 | 
						|
		}
 | 
						|
		if left <= right {
 | 
						|
			right -= delta
 | 
						|
		} else {
 | 
						|
			left -= delta
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	unsafe {
 | 
						|
		sz := usize(sizeof(T))
 | 
						|
		rawarray := C.malloc(raw_array_malloc_size<T>())
 | 
						|
		dim := &T(usize(voidptr(mid)) - left * sz + right * sz)
 | 
						|
		if left <= right {
 | 
						|
			C.memcpy(rawarray, voidptr(usize(voidptr(mid)) - left * sz), left * sz)
 | 
						|
			C.memmove(voidptr(usize(voidptr(mid)) - left * sz), voidptr(mid), right * sz)
 | 
						|
			C.memcpy(voidptr(dim), rawarray, left * sz)
 | 
						|
		} else {
 | 
						|
			C.memcpy(rawarray, voidptr(mid), right * sz)
 | 
						|
			C.memmove(voidptr(dim), voidptr(usize(voidptr(mid)) - left * sz), left * sz)
 | 
						|
			C.memcpy(voidptr(usize(voidptr(mid)) - left * sz), rawarray, right * sz)
 | 
						|
		}
 | 
						|
		C.free(rawarray)
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
struct Block {
 | 
						|
mut:
 | 
						|
	x u64
 | 
						|
	y u64
 | 
						|
	z u64
 | 
						|
	w u64
 | 
						|
}
 | 
						|
 | 
						|
struct UnalignedBlock {
 | 
						|
mut:
 | 
						|
	x u64
 | 
						|
	y u64
 | 
						|
	z u64
 | 
						|
	w u64
 | 
						|
}
 | 
						|
 | 
						|
const (
 | 
						|
	extra_size = 32 * sizeof(usize)
 | 
						|
)
 | 
						|
 | 
						|
fn raw_array_cap<T>() usize {
 | 
						|
	if sizeof(T) > arrays.extra_size {
 | 
						|
		return 1
 | 
						|
	} else {
 | 
						|
		return arrays.extra_size / sizeof(T)
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
fn raw_array_malloc_size<T>() usize {
 | 
						|
	if sizeof(T) > arrays.extra_size {
 | 
						|
		return usize(sizeof(T)) * 2
 | 
						|
	} else {
 | 
						|
		return 32 * usize(sizeof(usize))
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
[unsafe]
 | 
						|
fn memswap(x voidptr, y voidptr, len usize) {
 | 
						|
	block_size := sizeof(Block)
 | 
						|
 | 
						|
	mut i := usize(0)
 | 
						|
	for i + block_size <= len {
 | 
						|
		mut t_ := Block{}
 | 
						|
		t := voidptr(&t_)
 | 
						|
 | 
						|
		xi := usize(x) + i
 | 
						|
		yi := usize(y) + i
 | 
						|
		unsafe {
 | 
						|
			C.memcpy(t, voidptr(xi), block_size)
 | 
						|
			C.memcpy(voidptr(xi), voidptr(yi), block_size)
 | 
						|
			C.memcpy(t, voidptr(yi), block_size)
 | 
						|
		}
 | 
						|
		i += block_size
 | 
						|
	}
 | 
						|
	if i < len {
 | 
						|
		mut t_ := UnalignedBlock{}
 | 
						|
		t := voidptr(&t_)
 | 
						|
		rem := len - i
 | 
						|
		xi := usize(x) + i
 | 
						|
		yi := usize(y) + i
 | 
						|
		unsafe {
 | 
						|
			C.memcpy(t, voidptr(xi), rem)
 | 
						|
			C.memcpy(voidptr(xi), voidptr(yi), rem)
 | 
						|
			C.memcpy(voidptr(yi), t, rem)
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
[unsafe]
 | 
						|
fn swap_nonoverlapping<T>(x_ &T, y_ &T, count int) {
 | 
						|
	x := voidptr(x_)
 | 
						|
	y := voidptr(y_)
 | 
						|
 | 
						|
	len := usize(sizeof(T)) * usize(count)
 | 
						|
	unsafe {
 | 
						|
		memswap(x, y, len)
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
// copy copies the `src` array elements to the `dst` array.
 | 
						|
// The number of the elements copied is the minimum of the length of both arrays.
 | 
						|
// Returns the number of elements copied.
 | 
						|
pub fn copy<T>(mut dst []T, src []T) int {
 | 
						|
	min := if dst.len < src.len { dst.len } else { src.len }
 | 
						|
	if min <= 0 {
 | 
						|
		return 0
 | 
						|
	}
 | 
						|
	if can_copy_bits<T>() {
 | 
						|
		blen := min * int(sizeof(T))
 | 
						|
		unsafe { vmemmove(&T(dst.data), src.data, blen) }
 | 
						|
	} else {
 | 
						|
		for i in 0 .. min {
 | 
						|
			dst[i] = src[i]
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return min
 | 
						|
}
 | 
						|
 | 
						|
// determines if T can be copied using `memcpy`
 | 
						|
// false if autofree needs to intervene
 | 
						|
// false if type is not copyable e.g. map
 | 
						|
fn can_copy_bits<T>() bool {
 | 
						|
	// references, C pointers, integers, floats, runes
 | 
						|
	if T.name[0] in [`&`, `b`, `c`, `f`, `i`, `r`, `u`, `v`] {
 | 
						|
		return true
 | 
						|
	}
 | 
						|
	return false
 | 
						|
}
 |