v/vlib/sync/pool_test.v

59 lines
1.5 KiB
V

import sync
import time
import rand
struct SResult {
s string
}
fn worker_s(p &sync.PoolProcessor, idx int, worker_id int) voidptr {
// TODO: this works, but confuses vfmt. It should be used instead of
// p.get_int_item when vfmt becomes smarter.
// item := p.get_item<string>(idx)
item := p.get_string_item(idx)
println('worker_s worker_id: $worker_id | idx: $idx | item: ${item}')
time.sleep_ms(rand.next(3))
return &SResult{item + item}
}
struct IResult {
i int
}
fn worker_i(p &sync.PoolProcessor, idx int, worker_id int) voidptr {
// TODO: this works, but confuses vfmt. See the comment above.
// item := p.get_item<int>(idx)
item := p.get_int_item(idx)
println('worker_i worker_id: $worker_id | idx: $idx | item: ${item}')
time.sleep_ms(rand.next(5))
return &IResult{item * 1000}
}
fn test_work_on_strings() {
rand.seed(0)
mut pool_s := sync.new_pool_processor({
callback: worker_s
maxjobs: 8
})
pool_s.work_on_items<string>(['a','b','c','d','e','f','g','h','i','j'])
for x in pool_s.get_results<SResult>() {
println( x.s )
assert x.s.len > 1
}
}
fn test_work_on_ints() {
rand.seed(0)
// NB: since maxjobs is left empty here,
// the pool processor will use njobs = runtime.nr_jobs so that
// it will work optimally without overloading the system
mut pool_i := sync.new_pool_processor({
callback: worker_i
})
pool_i.work_on_items<int>([1,2,3,4,5,6,7,8])
for x in pool_i.get_results<IResult>() {
println( x.i )
assert x.i > 100
}
}