v/vlib/math/bits.v

59 lines
1.9 KiB
V
Raw Blame History

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

// Copyright (c) 2019-2021 Alexander Medvednikov. All rights reserved.
// Use of this source code is governed by an MIT license
// that can be found in the LICENSE file.
module math
const (
uvnan = u64(0x7FF8000000000001)
uvinf = u64(0x7FF0000000000000)
uvneginf = u64(0xFFF0000000000000)
uvone = u64(0x3FF0000000000000)
mask = 0x7FF
shift = 64 - 11 - 1
bias = 1023
sign_mask = (u64(1)<<63)
frac_mask = ((u64(1)<<u64(shift)) - u64(1))
)
// inf returns positive infinity if sign >= 0, negative infinity if sign < 0.
pub fn inf(sign int) f64 {
v := if sign >= 0 { uvinf } else { uvneginf }
return f64_from_bits(v)
}
// nan returns an IEEE 754 ``not-a-number'' value.
pub fn nan() f64 {
return f64_from_bits(uvnan)
}
// is_nan reports whether f is an IEEE 754 ``not-a-number'' value.
pub fn is_nan(f f64) bool {
// IEEE 754 says that only NaNs satisfy f != f.
// To avoid the floating-point hardware, could use:
// x := f64_bits(f);
// return u32(x>>shift)&mask == mask && x != uvinf && x != uvneginf
return f != f
}
// is_inf reports whether f is an infinity, according to sign.
// If sign > 0, is_inf reports whether f is positive infinity.
// If sign < 0, is_inf reports whether f is negative infinity.
// If sign == 0, is_inf reports whether f is either infinity.
pub fn is_inf(f f64, sign int) bool {
// Test for infinity by comparing against maximum float.
// To avoid the floating-point hardware, could use:
// x := f64_bits(f);
// return sign >= 0 && x == uvinf || sign <= 0 && x == uvneginf;
return (sign >= 0 && f > max_f64) || (sign <= 0 && f < -max_f64)
}
// NOTE: (joe-c) exponent notation is borked
// normalize returns a normal number y and exponent exp
// satisfying x == y × 2**exp. It assumes x is finite and non-zero.
// pub fn normalize(x f64) (f64, int) {
// smallest_normal := 2.2250738585072014e-308 // 2**-1022
// if abs(x) < smallest_normal {
// return x * (1 << 52), -52
// }
// return x, 0
// }