557 lines
9.7 KiB
V
557 lines
9.7 KiB
V
module strconv
|
||
|
||
import math.bits
|
||
// import math
|
||
|
||
/*
|
||
f32/f64 to string utilities
|
||
|
||
Copyright (c) 2019-2021 Dario Deledda. All rights reserved.
|
||
Use of this source code is governed by an MIT license
|
||
that can be found in the LICENSE file.
|
||
|
||
This file contains the f32/f64 to string utilities functions
|
||
|
||
These functions are based on the work of:
|
||
Publication:PLDI 2018: Proceedings of the 39th ACM SIGPLAN
|
||
Conference on Programming Language Design and ImplementationJune 2018
|
||
Pages 270–282 https://doi.org/10.1145/3192366.3192369
|
||
|
||
inspired by the Go version here:
|
||
https://github.com/cespare/ryu/tree/ba56a33f39e3bbbfa409095d0f9ae168a595feea
|
||
*/
|
||
|
||
// General Utilities
|
||
[if debug_strconv ?]
|
||
fn assert1(t bool, msg string) {
|
||
if !t {
|
||
panic(msg)
|
||
}
|
||
}
|
||
|
||
[inline]
|
||
fn bool_to_int(b bool) int {
|
||
if b {
|
||
return 1
|
||
}
|
||
return 0
|
||
}
|
||
|
||
[inline]
|
||
fn bool_to_u32(b bool) u32 {
|
||
if b {
|
||
return u32(1)
|
||
}
|
||
return u32(0)
|
||
}
|
||
|
||
[inline]
|
||
fn bool_to_u64(b bool) u64 {
|
||
if b {
|
||
return u64(1)
|
||
}
|
||
return u64(0)
|
||
}
|
||
|
||
fn get_string_special(neg bool, expZero bool, mantZero bool) string {
|
||
if !mantZero {
|
||
return 'nan'
|
||
}
|
||
if !expZero {
|
||
if neg {
|
||
return '-inf'
|
||
} else {
|
||
return '+inf'
|
||
}
|
||
}
|
||
if neg {
|
||
return '-0e+00'
|
||
}
|
||
return '0e+00'
|
||
}
|
||
|
||
/*
|
||
32 bit functions
|
||
*/
|
||
|
||
fn mul_shift_32(m u32, mul u64, ishift int) u32 {
|
||
// QTODO
|
||
// assert ishift > 32
|
||
|
||
hi, lo := bits.mul_64(u64(m), mul)
|
||
shifted_sum := (lo >> u64(ishift)) + (hi << u64(64 - ishift))
|
||
assert1(shifted_sum <= 2147483647, 'shiftedSum <= math.max_u32')
|
||
return u32(shifted_sum)
|
||
}
|
||
|
||
fn mul_pow5_invdiv_pow2(m u32, q u32, j int) u32 {
|
||
return mul_shift_32(m, pow5_inv_split_32[q], j)
|
||
}
|
||
|
||
fn mul_pow5_div_pow2(m u32, i u32, j int) u32 {
|
||
return mul_shift_32(m, pow5_split_32[i], j)
|
||
}
|
||
|
||
fn pow5_factor_32(i_v u32) u32 {
|
||
mut v := i_v
|
||
for n := u32(0); true; n++ {
|
||
q := v / 5
|
||
r := v % 5
|
||
if r != 0 {
|
||
return n
|
||
}
|
||
v = q
|
||
}
|
||
return v
|
||
}
|
||
|
||
// multiple_of_power_of_five_32 reports whether v is divisible by 5^p.
|
||
fn multiple_of_power_of_five_32(v u32, p u32) bool {
|
||
return pow5_factor_32(v) >= p
|
||
}
|
||
|
||
// multiple_of_power_of_two_32 reports whether v is divisible by 2^p.
|
||
fn multiple_of_power_of_two_32(v u32, p u32) bool {
|
||
return u32(bits.trailing_zeros_32(v)) >= p
|
||
}
|
||
|
||
// log10_pow2 returns floor(log_10(2^e)).
|
||
fn log10_pow2(e int) u32 {
|
||
// The first value this approximation fails for is 2^1651
|
||
// which is just greater than 10^297.
|
||
assert1(e >= 0, 'e >= 0')
|
||
assert1(e <= 1650, 'e <= 1650')
|
||
return (u32(e) * 78913) >> 18
|
||
}
|
||
|
||
// log10_pow5 returns floor(log_10(5^e)).
|
||
fn log10_pow5(e int) u32 {
|
||
// The first value this approximation fails for is 5^2621
|
||
// which is just greater than 10^1832.
|
||
assert1(e >= 0, 'e >= 0')
|
||
assert1(e <= 2620, 'e <= 2620')
|
||
return (u32(e) * 732923) >> 20
|
||
}
|
||
|
||
// pow5_bits returns ceil(log_2(5^e)), or else 1 if e==0.
|
||
fn pow5_bits(e int) int {
|
||
// This approximation works up to the point that the multiplication
|
||
// overflows at e = 3529. If the multiplication were done in 64 bits,
|
||
// it would fail at 5^4004 which is just greater than 2^9297.
|
||
assert1(e >= 0, 'e >= 0')
|
||
assert1(e <= 3528, 'e <= 3528')
|
||
return int(((u32(e) * 1217359) >> 19) + 1)
|
||
}
|
||
|
||
/*
|
||
64 bit functions
|
||
*/
|
||
|
||
fn shift_right_128(v Uint128, shift int) u64 {
|
||
// The shift value is always modulo 64.
|
||
// In the current implementation of the 64-bit version
|
||
// of Ryu, the shift value is always < 64.
|
||
// (It is in the range [2, 59].)
|
||
// Check this here in case a future change requires larger shift
|
||
// values. In this case this function needs to be adjusted.
|
||
assert1(shift < 64, 'shift < 64')
|
||
return (v.hi << u64(64 - shift)) | (v.lo >> u32(shift))
|
||
}
|
||
|
||
fn mul_shift_64(m u64, mul Uint128, shift int) u64 {
|
||
hihi, hilo := bits.mul_64(m, mul.hi)
|
||
lohi, _ := bits.mul_64(m, mul.lo)
|
||
mut sum := Uint128{
|
||
lo: lohi + hilo
|
||
hi: hihi
|
||
}
|
||
if sum.lo < lohi {
|
||
sum.hi++ // overflow
|
||
}
|
||
return shift_right_128(sum, shift - 64)
|
||
}
|
||
|
||
fn pow5_factor_64(v_i u64) u32 {
|
||
mut v := v_i
|
||
for n := u32(0); true; n++ {
|
||
q := v / 5
|
||
r := v % 5
|
||
if r != 0 {
|
||
return n
|
||
}
|
||
v = q
|
||
}
|
||
return u32(0)
|
||
}
|
||
|
||
fn multiple_of_power_of_five_64(v u64, p u32) bool {
|
||
return pow5_factor_64(v) >= p
|
||
}
|
||
|
||
fn multiple_of_power_of_two_64(v u64, p u32) bool {
|
||
return u32(bits.trailing_zeros_64(v)) >= p
|
||
}
|
||
|
||
/*
|
||
f64 to string with string format
|
||
*/
|
||
|
||
// TODO: Investigate precision issues
|
||
// f32_to_str_l return a string with the f32 converted in a string in decimal notation
|
||
[manualfree]
|
||
pub fn f32_to_str_l(f f32) string {
|
||
s := f32_to_str(f, 6)
|
||
res := fxx_to_str_l_parse(s)
|
||
unsafe { s.free() }
|
||
return res
|
||
}
|
||
|
||
[manualfree]
|
||
pub fn f32_to_str_l_no_dot(f f32) string {
|
||
s := f32_to_str(f, 6)
|
||
res := fxx_to_str_l_parse_no_dot(s)
|
||
unsafe { s.free() }
|
||
return res
|
||
}
|
||
|
||
[manualfree]
|
||
pub fn f64_to_str_l(f f64) string {
|
||
s := f64_to_str(f, 18)
|
||
res := fxx_to_str_l_parse(s)
|
||
unsafe { s.free() }
|
||
return res
|
||
}
|
||
|
||
[manualfree]
|
||
pub fn f64_to_str_l_no_dot(f f64) string {
|
||
s := f64_to_str(f, 18)
|
||
res := fxx_to_str_l_parse_no_dot(s)
|
||
unsafe { s.free() }
|
||
return res
|
||
}
|
||
|
||
// f64_to_str_l return a string with the f64 converted in a string in decimal notation
|
||
[manualfree]
|
||
pub fn fxx_to_str_l_parse(s string) string {
|
||
// check for +inf -inf Nan
|
||
if s.len > 2 && (s[0] == `n` || s[1] == `i`) {
|
||
return s.clone()
|
||
}
|
||
|
||
m_sgn_flag := false
|
||
mut sgn := 1
|
||
mut b := [26]byte{}
|
||
mut d_pos := 1
|
||
mut i := 0
|
||
mut i1 := 0
|
||
mut exp := 0
|
||
mut exp_sgn := 1
|
||
|
||
// get sign and decimal parts
|
||
for c in s {
|
||
if c == `-` {
|
||
sgn = -1
|
||
i++
|
||
} else if c == `+` {
|
||
sgn = 1
|
||
i++
|
||
} else if c >= `0` && c <= `9` {
|
||
b[i1] = c
|
||
i1++
|
||
i++
|
||
} else if c == `.` {
|
||
if sgn > 0 {
|
||
d_pos = i
|
||
} else {
|
||
d_pos = i - 1
|
||
}
|
||
i++
|
||
} else if c == `e` {
|
||
i++
|
||
break
|
||
} else {
|
||
return 'Float conversion error!!'
|
||
}
|
||
}
|
||
b[i1] = 0
|
||
|
||
// get exponent
|
||
if s[i] == `-` {
|
||
exp_sgn = -1
|
||
i++
|
||
} else if s[i] == `+` {
|
||
exp_sgn = 1
|
||
i++
|
||
}
|
||
|
||
mut c := i
|
||
for c < s.len {
|
||
exp = exp * 10 + int(s[c] - `0`)
|
||
c++
|
||
}
|
||
|
||
// allocate exp+32 chars for the return string
|
||
mut res := []byte{len: exp + 32, init: 0}
|
||
mut r_i := 0 // result string buffer index
|
||
|
||
// println("s:${sgn} b:${b[0]} es:${exp_sgn} exp:${exp}")
|
||
|
||
if sgn == 1 {
|
||
if m_sgn_flag {
|
||
res[r_i] = `+`
|
||
r_i++
|
||
}
|
||
} else {
|
||
res[r_i] = `-`
|
||
r_i++
|
||
}
|
||
|
||
i = 0
|
||
if exp_sgn >= 0 {
|
||
for b[i] != 0 {
|
||
res[r_i] = b[i]
|
||
r_i++
|
||
i++
|
||
if i >= d_pos && exp >= 0 {
|
||
if exp == 0 {
|
||
res[r_i] = `.`
|
||
r_i++
|
||
}
|
||
exp--
|
||
}
|
||
}
|
||
for exp >= 0 {
|
||
res[r_i] = `0`
|
||
r_i++
|
||
exp--
|
||
}
|
||
} else {
|
||
mut dot_p := true
|
||
for exp > 0 {
|
||
res[r_i] = `0`
|
||
r_i++
|
||
exp--
|
||
if dot_p {
|
||
res[r_i] = `.`
|
||
r_i++
|
||
dot_p = false
|
||
}
|
||
}
|
||
for b[i] != 0 {
|
||
res[r_i] = b[i]
|
||
r_i++
|
||
i++
|
||
}
|
||
}
|
||
/*
|
||
// remove the dot form the numbers like 2.
|
||
if r_i > 1 && res[r_i-1] == `.` {
|
||
r_i--
|
||
}
|
||
*/
|
||
res[r_i] = 0
|
||
return unsafe { tos(res.data, r_i) }
|
||
}
|
||
|
||
// f64_to_str_l return a string with the f64 converted in a string in decimal notation
|
||
[manualfree]
|
||
pub fn fxx_to_str_l_parse_no_dot(s string) string {
|
||
// check for +inf -inf Nan
|
||
if s.len > 2 && (s[0] == `n` || s[1] == `i`) {
|
||
return s.clone()
|
||
}
|
||
|
||
m_sgn_flag := false
|
||
mut sgn := 1
|
||
mut b := [26]byte{}
|
||
mut d_pos := 1
|
||
mut i := 0
|
||
mut i1 := 0
|
||
mut exp := 0
|
||
mut exp_sgn := 1
|
||
|
||
// get sign and decimal parts
|
||
for c in s {
|
||
if c == `-` {
|
||
sgn = -1
|
||
i++
|
||
} else if c == `+` {
|
||
sgn = 1
|
||
i++
|
||
} else if c >= `0` && c <= `9` {
|
||
b[i1] = c
|
||
i1++
|
||
i++
|
||
} else if c == `.` {
|
||
if sgn > 0 {
|
||
d_pos = i
|
||
} else {
|
||
d_pos = i - 1
|
||
}
|
||
i++
|
||
} else if c == `e` {
|
||
i++
|
||
break
|
||
} else {
|
||
return 'Float conversion error!!'
|
||
}
|
||
}
|
||
b[i1] = 0
|
||
|
||
// get exponent
|
||
if s[i] == `-` {
|
||
exp_sgn = -1
|
||
i++
|
||
} else if s[i] == `+` {
|
||
exp_sgn = 1
|
||
i++
|
||
}
|
||
|
||
mut c := i
|
||
for c < s.len {
|
||
exp = exp * 10 + int(s[c] - `0`)
|
||
c++
|
||
}
|
||
|
||
// allocate exp+32 chars for the return string
|
||
mut res := []byte{len: exp + 32, init: 0}
|
||
mut r_i := 0 // result string buffer index
|
||
|
||
// println("s:${sgn} b:${b[0]} es:${exp_sgn} exp:${exp}")
|
||
|
||
if sgn == 1 {
|
||
if m_sgn_flag {
|
||
res[r_i] = `+`
|
||
r_i++
|
||
}
|
||
} else {
|
||
res[r_i] = `-`
|
||
r_i++
|
||
}
|
||
|
||
i = 0
|
||
if exp_sgn >= 0 {
|
||
for b[i] != 0 {
|
||
res[r_i] = b[i]
|
||
r_i++
|
||
i++
|
||
if i >= d_pos && exp >= 0 {
|
||
if exp == 0 {
|
||
res[r_i] = `.`
|
||
r_i++
|
||
}
|
||
exp--
|
||
}
|
||
}
|
||
for exp >= 0 {
|
||
res[r_i] = `0`
|
||
r_i++
|
||
exp--
|
||
}
|
||
} else {
|
||
mut dot_p := true
|
||
for exp > 0 {
|
||
res[r_i] = `0`
|
||
r_i++
|
||
exp--
|
||
if dot_p {
|
||
res[r_i] = `.`
|
||
r_i++
|
||
dot_p = false
|
||
}
|
||
}
|
||
for b[i] != 0 {
|
||
res[r_i] = b[i]
|
||
r_i++
|
||
i++
|
||
}
|
||
}
|
||
|
||
// remove the dot form the numbers like 2.
|
||
if r_i > 1 && res[r_i - 1] == `.` {
|
||
r_i--
|
||
}
|
||
|
||
res[r_i] = 0
|
||
return unsafe { tos(res.data, r_i) }
|
||
}
|
||
|
||
// dec_digits return the number of decimal digit of an u64
|
||
pub fn dec_digits(n u64) int {
|
||
if n <= 9_999_999_999 { // 1-10
|
||
if n <= 99_999 { // 5
|
||
if n <= 99 { // 2
|
||
if n <= 9 { // 1
|
||
return 1
|
||
} else {
|
||
return 2
|
||
}
|
||
} else {
|
||
if n <= 999 { // 3
|
||
return 3
|
||
} else {
|
||
if n <= 9999 { // 4
|
||
return 4
|
||
} else {
|
||
return 5
|
||
}
|
||
}
|
||
}
|
||
} else {
|
||
if n <= 9_999_999 { // 7
|
||
if n <= 999_999 { // 6
|
||
return 6
|
||
} else {
|
||
return 7
|
||
}
|
||
} else {
|
||
if n <= 99_999_999 { // 8
|
||
return 8
|
||
} else {
|
||
if n <= 999_999_999 { // 9
|
||
return 9
|
||
}
|
||
return 10
|
||
}
|
||
}
|
||
}
|
||
} else {
|
||
if n <= 999_999_999_999_999 { // 5
|
||
if n <= 999_999_999_999 { // 2
|
||
if n <= 99_999_999_999 { // 1
|
||
return 11
|
||
} else {
|
||
return 12
|
||
}
|
||
} else {
|
||
if n <= 9_999_999_999_999 { // 3
|
||
return 13
|
||
} else {
|
||
if n <= 99_999_999_999_999 { // 4
|
||
return 14
|
||
} else {
|
||
return 15
|
||
}
|
||
}
|
||
}
|
||
} else {
|
||
if n <= 99_999_999_999_999_999 { // 7
|
||
if n <= 9_999_999_999_999_999 { // 6
|
||
return 16
|
||
} else {
|
||
return 17
|
||
}
|
||
} else {
|
||
if n <= 999_999_999_999_999_999 { // 8
|
||
return 18
|
||
} else {
|
||
if n <= 9_999_999_999_999_999_999 { // 9
|
||
return 19
|
||
}
|
||
return 20
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|