81 lines
		
	
	
		
			1.9 KiB
		
	
	
	
		
			V
		
	
	
			
		
		
	
	
			81 lines
		
	
	
		
			1.9 KiB
		
	
	
	
		
			V
		
	
	
| // Copyright (c) 2019-2020 Alexander Medvednikov. All rights reserved.
 | |
| // Use of this source code is governed by an MIT license
 | |
| // that can be found in the LICENSE file.
 | |
| 
 | |
| // Module created by Ulises Jeremias Cornejo Fandos based on
 | |
| // the definitions provided in https://scientificc.github.io/cmathl/
 | |
| 
 | |
| module factorial
 | |
| 
 | |
| import math
 | |
| 
 | |
| // factorial calculates the factorial of the provided value.
 | |
| pub fn factorial(n f64) f64 {
 | |
| 	// For a large postive argument (n >= FACTORIALS.len) return max_f64
 | |
| 
 | |
| 	if n >= factorials_table.len {
 | |
| 			return math.max_f64
 | |
| 	}
 | |
| 
 | |
| 	// Otherwise return n!.
 | |
| 	if n == f64(i64(n)) && n >= 0.0 {
 | |
| 		return factorials_table[i64(n)]
 | |
| 	}
 | |
| 
 | |
| 	return math.gamma(n + 1.0)
 | |
| }
 | |
| 
 | |
| // log_factorial calculates the log-factorial of the provided value.
 | |
| pub fn log_factorial(n f64) f64 {
 | |
| 	// For a large postive argument (n < 0) return max_f64
 | |
| 
 | |
| 	if n < 0 {
 | |
|                 return -math.max_f64
 | |
| 	}
 | |
| 
 | |
| 	// If n < N then return ln(n!).
 | |
| 
 | |
| 	if n != f64(i64(n)) {
 | |
| 		return math.log_gamma(n+1)
 | |
| 	} else if n < log_factorials_table.len {
 | |
|                 return log_factorials_table[i64(n)]
 | |
|         }
 | |
| 
 | |
| 	// Otherwise return asymptotic expansion of ln(n!).
 | |
| 
 | |
|         return log_factorial_asymptotic_expansion(int(n))
 | |
| }
 | |
| 
 | |
| fn log_factorial_asymptotic_expansion(n int) f64 {
 | |
|         m := 6
 | |
|         mut term := []f64{}
 | |
|         xx := f64((n + 1) * (n + 1))
 | |
|         mut xj := f64(n + 1)
 | |
| 
 | |
|         log_factorial := log_sqrt_2pi - xj + (xj - 0.5) * math.log(xj)
 | |
| 
 | |
|         mut i := 0
 | |
| 
 | |
|         for i = 0; i < m; i++ {
 | |
|                 term << b_numbers[i] / xj
 | |
|                 xj *= xx
 | |
|         }
 | |
| 
 | |
|         mut sum := term[m-1]
 | |
| 
 | |
|         for i = m - 2; i >= 0; i-- {
 | |
|                 if math.abs(sum) <= math.abs(term[i]) {
 | |
|                         break
 | |
|                 }
 | |
| 
 | |
|                 sum = term[i]
 | |
|         }
 | |
| 
 | |
|         for i >= 0 {
 | |
|                 sum += term[i]
 | |
|                 i--
 | |
|         }
 | |
| 
 | |
|         return log_factorial + sum
 | |
| }
 |