v/vlib/dlmalloc/dlmalloc.v

1569 lines
34 KiB
V

// This is a version of dlmalloc.c ported to V. You can find the original
// source at ftp://g.oswego.edu/pub/misc/malloc.c
//
// The original source was written by Doug Lea and released to the public domain
//
//
// # Why dlmalloc?
//
// This library does not rely on C code. The primary purpose is for use in freestanding
// build mode and for WASM target.
//
// dlmalloc is not the most performant allocator. It's main purpose is to be
// easily portable and easy to learn. Here we have straight port of C and dlmalloc-rs
// versions of dlmalloc.
module dlmalloc
import math.bits
pub const (
n_small_bins = 32
n_tree_bins = 32
small_bin_shift = 3
tree_bin_shift = 8
max_release_check_rate = 4095
)
fn usize_leading_zeros(x usize) usize {
if sizeof(usize) == 8 {
return usize(bits.leading_zeros_64(u64(x)))
} else {
return usize(bits.leading_zeros_32(u32(x)))
}
}
[inline]
fn default_granularity() usize {
return 64 * 1024
}
[inline]
fn default_trim_threshold() usize {
return 2 * 1024 * 1024
}
[inline]
fn malloc_alignment() usize {
return sizeof(usize) * 2
}
[inline]
fn chunk_overhead() usize {
return sizeof(usize)
}
[inline]
fn min_large_size() usize {
return 1 << dlmalloc.tree_bin_shift
}
[inline]
fn mmap_chunk_overhead() usize {
return 2 * sizeof(usize)
}
[inline]
fn max_small_size() usize {
return min_large_size() - 1
}
[inline]
fn max_small_request() usize {
return max_small_size() - (malloc_alignment() - 1) - chunk_overhead()
}
[inline]
fn min_chunk_size() usize {
return align_up(sizeof(Chunk), malloc_alignment())
}
[inline]
fn chunk_mem_offset() usize {
return 2 * sizeof(usize)
}
[inline]
fn min_request() usize {
return min_chunk_size() - chunk_overhead() - 1
}
[inline]
fn top_foot_size() usize {
return align_offset_usize(chunk_mem_offset()) + pad_request(sizeof(Segment)) + min_chunk_size()
}
[inline]
fn max_request() usize {
return calc_max_request()
}
[inline]
fn mmap_foot_pad() usize {
return 4 * sizeof(usize)
}
fn min_sys_alloc_space() usize {
return ((~0 - (default_granularity() + top_foot_size() + malloc_alignment()) +
1) & ~malloc_alignment()) - chunk_overhead() + 1
}
fn calc_max_request() usize {
x := min_sys_alloc_space()
y := (~min_chunk_size() + 1) << 2
if x < y {
return x
} else {
return y
}
}
fn pad_request(amt usize) usize {
return align_up(amt + chunk_overhead(), malloc_alignment())
}
fn align_offset_usize(addr usize) usize {
return align_up(addr, malloc_alignment()) - addr
}
fn is_aligned(a usize) bool {
return a & (malloc_alignment() - 1) == 0
}
fn is_small(s usize) bool {
return s >> dlmalloc.small_bin_shift < dlmalloc.n_small_bins
}
fn small_index2size(idx u32) usize {
return usize(idx) << dlmalloc.small_bin_shift
}
fn small_index(size usize) u32 {
return u32(size >> dlmalloc.small_bin_shift)
}
fn align_up(a usize, alignment usize) usize {
return (a + (alignment - 1)) & ~(alignment - 1)
}
fn left_bits(x u32) u32 {
return (x << 1) | (~(x << 1)) + 1
}
fn least_bit(x u32) u32 {
return x & (~x + 1)
}
fn leftshift_for_tree_index(x u32) u32 {
y := usize(x)
if y == dlmalloc.n_tree_bins - 1 {
return 0
} else {
return u32(sizeof(usize) * 8 - 1 - ((y >> 1) + dlmalloc.tree_bin_shift - 2))
}
}
[unsafe]
fn align_as_chunk(ptr_ voidptr) &Chunk {
ptr := usize(ptr_)
chunk := ptr + chunk_mem_offset()
return &Chunk(ptr + align_offset_usize(chunk))
}
fn request_2_size(req usize) usize {
if req < min_request() {
return min_chunk_size()
} else {
return pad_request(req)
}
}
fn overhead_for(c &Chunk) usize {
if c.mmapped() {
return mmap_chunk_overhead()
} else {
return chunk_overhead()
}
}
// In order for dlmalloc to efficently manage memory, it needs a way to communicate with the underlying platform.
// This `Allocator` type provides an interface for this communication.
//
//
// Why not `interface?` Interfaces require memory allocation so it is simpler to pass a struct.
pub struct Allocator {
alloc fn (voidptr, usize) (voidptr, usize, u32)
remap fn (voidptr, voidptr, usize, usize, bool) voidptr
free_part fn (voidptr, voidptr, usize, usize) bool
free_ fn (voidptr, voidptr, usize) bool
can_release_part fn (voidptr, u32) bool
allocates_zeros fn (voidptr) bool
page_size fn (voidptr) usize // not a constant field because some platforms might have different page sizes depending on configs
data voidptr
}
pub struct Dlmalloc {
system_allocator Allocator
max_request usize = 4294901657
mut:
// bin maps
smallmap u32 // bin map for small bins
treemap u32 // bin map for tree bins
smallbins [66]&Chunk // small bins, it is actually (n_small_bins + 1) * 2
treebins [n_tree_bins]&TreeChunk
dvsize usize
topsize usize
dv &Chunk = voidptr(0)
top &Chunk = voidptr(0)
footprint usize
max_footprint usize
seg Segment
trim_check u32
least_addr voidptr
release_checks usize
}
pub fn new(system_allocator Allocator) Dlmalloc {
return Dlmalloc{
smallmap: 0
treemap: 0
smallbins: [(dlmalloc.n_small_bins + 1) * 2]&Chunk{}
treebins: [dlmalloc.n_tree_bins]&TreeChunk{}
dvsize: 0
topsize: 0
dv: voidptr(0)
top: voidptr(0)
footprint: 0
max_footprint: 0
seg: Segment{voidptr(0), 0, voidptr(0), 0}
trim_check: 0
least_addr: voidptr(0)
release_checks: 0
system_allocator: system_allocator
max_request: 4294901657
}
}
[heap]
struct Chunk {
mut:
prev_foot usize
head usize
prev &Chunk
next &Chunk
}
[heap]
struct Segment {
mut:
base voidptr
size usize
next &Segment
flags u32
}
[heap]
struct TreeChunk {
mut:
chunk Chunk
child [2]voidptr
parent voidptr
index u32
}
const (
pinuse = 1 << 0
cinuse = 1 << 1
flag4 = 1 << 2
inuse = pinuse | cinuse
flag_bits = pinuse | cinuse | flag4
)
fn fencepost_head() usize {
return dlmalloc.inuse | sizeof(usize)
}
fn (c &Chunk) size() usize {
return c.head & ~dlmalloc.flag_bits
}
fn (c &Chunk) mmapped() bool {
return c.head & dlmalloc.inuse == 0
}
fn (c &Chunk) next() &Chunk {
mut me := usize(c)
me = me + c.size()
return &Chunk(me)
}
fn (c &Chunk) prev() &Chunk {
mut me := usize(c)
me = me + c.prev_foot
return &Chunk(me)
}
fn (c &Chunk) cinuse() bool {
return c.head & dlmalloc.cinuse != 0
}
fn (c &Chunk) pinuse() bool {
return c.head & dlmalloc.pinuse != 0
}
fn (mut c Chunk) clear_pinuse() {
c.head &= ~dlmalloc.pinuse
}
fn (c &Chunk) inuse() bool {
return c.head & dlmalloc.inuse != dlmalloc.pinuse
}
fn (mut c Chunk) set_inuse(size usize) {
c.head = (c.head & dlmalloc.pinuse) | size | dlmalloc.cinuse
mut next := c.plus_offset(size)
next.head |= dlmalloc.pinuse
}
fn (mut c Chunk) set_inuse_and_pinuse(size usize) {
c.head = dlmalloc.pinuse | size | dlmalloc.cinuse
mut next := c.plus_offset(size)
next.head |= dlmalloc.pinuse
}
fn (mut c Chunk) set_size_and_pinuse_of_inuse_chunk(size usize) {
c.head = size | dlmalloc.pinuse | dlmalloc.cinuse
}
fn (mut c Chunk) set_size_and_pinuse_of_free_chunk(size usize) {
c.head = size | dlmalloc.pinuse
c.set_foot(size)
}
fn (mut c Chunk) set_free_with_pinuse(size usize, n_ &Chunk) {
mut n := n_
n.clear_pinuse()
c.set_size_and_pinuse_of_free_chunk(size)
}
fn (c &Chunk) set_foot(size usize) {
mut next := c.plus_offset(size)
next.prev_foot = size
}
fn (c &Chunk) plus_offset(offset usize) &Chunk {
return &Chunk((usize(c) + offset))
}
fn (c &Chunk) minus_offset(offset usize) &Chunk {
return &Chunk(usize(c) - offset)
}
fn (c &Chunk) to_mem() voidptr {
return voidptr(usize(c) + chunk_mem_offset())
}
fn chunk_from_mem(mem_ voidptr) &Chunk {
mem := usize(mem_)
return &Chunk((mem - chunk_mem_offset()))
}
fn (tree &TreeChunk) leftmost_child() &TreeChunk {
left := &TreeChunk(tree.child[0])
if isnil(left) {
return tree.child[1]
} else {
return left
}
}
fn (tree &TreeChunk) chunk() &Chunk {
return &tree.chunk
}
[unsafe]
fn (tree &TreeChunk) next() &TreeChunk {
unsafe {
return &TreeChunk(tree.chunk().next)
}
}
[unsafe]
fn (tree &TreeChunk) prev() &TreeChunk {
unsafe {
return &TreeChunk(tree.chunk().prev)
}
}
const extern = 1 << 0
fn (seg &Segment) is_extern() bool {
return seg.flags & dlmalloc.extern != 0
}
fn (seg &Segment) can_release_part(sys_alloc &Allocator) bool {
return sys_alloc.can_release_part(sys_alloc.data, seg.flags >> 1)
}
fn (seg &Segment) sys_flags() u32 {
return seg.flags >> 1
}
fn (seg &Segment) holds(addr voidptr) bool {
return seg.base <= addr && addr < seg.top()
}
fn (seg &Segment) top() voidptr {
return voidptr(usize(seg.base) + seg.size)
}
[unsafe]
pub fn (dl &Dlmalloc) calloc_must_clear(ptr voidptr) bool {
return !dl.system_allocator.allocates_zeros(dl.system_allocator.data)
|| !chunk_from_mem(ptr).mmapped()
}
[unsafe]
fn (mut dl Dlmalloc) smallbin_at(idx u32) &Chunk {
unsafe {
return &Chunk(&dl.smallbins[idx * 2])
}
}
[unsafe]
fn (mut dl Dlmalloc) treebin_at(idx u32) &&TreeChunk {
return &dl.treebins[idx]
}
fn (dl &Dlmalloc) compute_tree_index(size usize) u32 {
x := size >> dlmalloc.tree_bin_shift
if x == 0 {
return 0
} else if x > 0xffff {
return dlmalloc.n_tree_bins - 1
} else {
k := sizeof(usize) * 8 - 1 - usize_leading_zeros(x)
return u32((k << 1) + (size >> (k + dlmalloc.tree_bin_shift - 1) & 1))
}
}
[unsafe]
fn (mut dl Dlmalloc) unlink_chunk(chunk &Chunk, size usize) {
unsafe {
if is_small(size) {
dl.unlink_small_chunk(chunk, size)
} else {
dl.unlink_large_chunk(&TreeChunk(chunk))
}
}
}
[unsafe]
fn (mut dl Dlmalloc) unlink_small_chunk(chunk_ &Chunk, size usize) {
mut chunk := chunk_
mut f := chunk.prev
mut b := chunk.next
idx := small_index(size)
if b == f {
unsafe { dl.clear_smallmap(idx) }
} else {
f.next = b
b.prev = f
}
}
[unsafe]
fn (mut dl Dlmalloc) unlink_large_chunk(chunk_ &TreeChunk) {
unsafe {
mut chunk := chunk_
mut xp := &TreeChunk(chunk.parent)
mut r := &TreeChunk(voidptr(0))
if voidptr(chunk.next()) != voidptr(chunk) {
mut f := chunk.prev()
r = chunk.next()
f.chunk.next = r.chunk()
r.chunk.prev = f.chunk()
} else {
mut rp := &&TreeChunk(&chunk.child[1])
if isnil(*rp) {
rp = &&TreeChunk(&chunk.child[0])
}
r = *rp
if !isnil(*rp) {
for {
mut cp := &&TreeChunk(&rp.child[1])
if isnil(*cp) {
cp = &&TreeChunk(&rp.child[0])
}
if isnil(*cp) {
break
}
rp = cp
}
r = *rp
*rp = &TreeChunk(voidptr(0))
}
}
if isnil(xp) {
return
}
mut h := dl.treebin_at(chunk.index)
if chunk == *h {
*h = r
if isnil(r) {
dl.clear_treemap(chunk.index)
}
} else {
if xp.child[0] == chunk {
xp.child[0] = r
} else {
xp.child[1] = r
}
}
if !isnil(r) {
r.parent = xp
mut c0 := &TreeChunk(chunk.child[0])
if !isnil(c0) {
r.child[0] = c0
c0.parent = r
}
mut c1 := &TreeChunk(chunk.child[1])
if !isnil(c1) {
r.child[1] = c1
c1.parent = r
}
}
}
}
[unsafe]
fn (mut dl Dlmalloc) unlink_first_small_chunk(head_ &Chunk, next_ &Chunk, idx u32) {
mut next := next_
mut head := head_
mut ptr := next.prev
if head == ptr {
unsafe { dl.clear_smallmap(idx) }
} else {
ptr.next = head
head.prev = ptr
}
}
// calloc is the same as `malloc`, except if the allocation succeeds it's guaranteed
// to point to `size` bytes of zeros.
[unsafe]
pub fn (mut dl Dlmalloc) calloc(size usize) voidptr {
unsafe {
ptr := dl.malloc(size)
if !isnil(ptr) && dl.calloc_must_clear(ptr) {
vmemset(ptr, 0, int(size))
}
return ptr
}
}
// free_ behaves as libc free, but operates within the given space
[unsafe]
pub fn (mut dl Dlmalloc) free_(mem voidptr) {
unsafe {
mut p := chunk_from_mem(mem)
mut psize := p.size()
next := p.plus_offset(psize)
if !p.pinuse() {
prevsize := p.prev_foot
if p.mmapped() {
psize += prevsize + mmap_foot_pad()
if dl.system_allocator.free_(dl.system_allocator.data, voidptr(usize(p) - prevsize),
psize)
{
dl.footprint -= psize
}
return
}
prev := p.minus_offset(prevsize)
psize += prevsize
p = prev
if voidptr(p) != voidptr(dl.dv) {
dl.unlink_chunk(p, prevsize)
} else if (next.head & dlmalloc.inuse) == dlmalloc.inuse {
dl.dvsize = psize
p.set_free_with_pinuse(psize, next)
return
}
}
// consolidate forward if we can
if !next.cinuse() {
if voidptr(next) == voidptr(dl.top) {
dl.topsize += psize
p.head = 0
tsize := dl.topsize
dl.top = p
p.head = tsize | dlmalloc.pinuse
if voidptr(p) == voidptr(dl.dv) {
dl.dv = voidptr(0)
dl.dvsize = 0
}
if dl.should_trim(tsize) {
dl.sys_trim(0)
}
return
} else if voidptr(next) == voidptr(dl.dv) {
dl.dvsize += psize
dsize := dl.dvsize
dl.dv = p
p.set_size_and_pinuse_of_free_chunk(dsize)
return
} else {
nsize := next.size()
psize += nsize
dl.unlink_chunk(next, nsize)
p.set_size_and_pinuse_of_free_chunk(psize)
if voidptr(p) == voidptr(dl.dv) {
dl.dvsize = psize
return
}
}
} else {
p.set_free_with_pinuse(psize, next)
}
if is_small(psize) {
dl.insert_small_chunk(p, psize)
} else {
dl.insert_large_chunk(&TreeChunk(p), psize)
dl.release_checks -= 1
if dl.release_checks == 0 {
dl.release_unused_segments()
}
}
}
}
fn (dl Dlmalloc) should_trim(size usize) bool {
return size > dl.trim_check
}
[unsafe]
fn (mut dl Dlmalloc) sys_trim(pad_ usize) bool {
unsafe {
mut pad := pad_
mut released := usize(0)
if pad < dl.max_request && !isnil(dl.top) {
pad += top_foot_size()
if dl.topsize > pad {
unit := usize(default_granularity)
extra := ((dl.topsize - pad + unit - 1) / unit - 1) * unit
mut sp := dl.segment_holding(dl.top)
if !sp.is_extern() {
if sp.can_release_part(&dl.system_allocator) {
if sp.size >= extra && !dl.has_segment_link(sp) {
newsize := sp.size - extra
if dl.system_allocator.free_part(dl.system_allocator.data,
sp.base, sp.size, newsize)
{
released = extra
}
}
}
}
if released != 0 {
sp.size -= released
dl.footprint -= released
top := dl.top
topsize := dl.topsize - released
dl.init_top(top, topsize)
}
}
released += dl.release_unused_segments()
if released == 0 && dl.topsize > dl.trim_check {
dl.trim_check = 1 << 31
}
}
return released != 0
}
}
[unsafe]
fn (mut dl Dlmalloc) release_unused_segments() usize {
unsafe {
mut released := usize(0)
mut nsegs := usize(0)
mut pred := &dl.seg
mut sp := pred.next
for !isnil(sp) {
base := sp.base
size := sp.size
next := sp.next
nsegs += 1
if sp.can_release_part(&dl.system_allocator) && !sp.is_extern() {
mut p := align_as_chunk(base)
psize := p.size()
chunk_top := voidptr(usize(p) + psize)
top := voidptr(usize(base) + (size - top_foot_size()))
if !p.inuse() && chunk_top >= top {
mut tp := &TreeChunk(p)
if voidptr(p) == voidptr(dl.dv) {
dl.dv = voidptr(0)
dl.dvsize = 0
} else {
dl.unlink_large_chunk(tp)
}
if dl.system_allocator.free_(dl.system_allocator.data, base, size) {
released += size
dl.footprint -= size
sp = pred
sp.next = next
} else {
// back out if we can't unmap
dl.insert_large_chunk(tp, psize)
}
}
}
pred = sp
sp = next
}
dl.release_checks = if nsegs > dlmalloc.max_release_check_rate {
nsegs
} else {
dlmalloc.max_release_check_rate
}
return released
}
}
[unsafe]
fn (dl &Dlmalloc) has_segment_link(ptr &Segment) bool {
mut sp := &dl.seg
for !isnil(sp) {
if ptr.holds(sp) {
return true
}
sp = sp.next
}
return false
}
[unsafe]
fn (mut dl Dlmalloc) replace_dv(chunk &Chunk, size usize) {
dvs := dl.dvsize
if dvs != 0 {
dv := dl.dv
unsafe {
dl.insert_small_chunk(dv, dvs)
}
}
dl.dvsize = size
dl.dv = chunk
}
[unsafe]
fn (mut dl Dlmalloc) insert_chunk(chunk &Chunk, size usize) {
unsafe {
if is_small(size) {
dl.insert_small_chunk(chunk, size)
} else {
dl.insert_large_chunk(&TreeChunk(chunk), size)
}
}
}
[unsafe]
fn (mut dl Dlmalloc) insert_small_chunk(chunk_ &Chunk, size usize) {
mut chunk := chunk_
idx := small_index(size)
unsafe {
mut head := dl.smallbin_at(idx)
mut f := head
if !dl.smallmap_is_marked(idx) {
dl.mark_smallmap(idx)
} else {
f = head.prev
}
assert !isnil(f)
assert !isnil(head)
head.prev = chunk
f.next = chunk
chunk.prev = f
chunk.next = head
}
}
[unsafe]
fn (mut dl Dlmalloc) insert_large_chunk(chunk_ &TreeChunk, size usize) {
mut chunk := chunk_
unsafe {
idx := dl.compute_tree_index(size)
mut h := dl.treebin_at(idx)
chunk.index = idx
chunk.child[0] = voidptr(0)
chunk.child[1] = voidptr(0)
mut chunkc := chunk.chunk()
if !dl.treemap_is_marked(idx) {
dl.mark_treemap(idx)
*h = chunk
chunk.parent = voidptr(h)
assert !isnil(chunkc)
chunkc.prev = chunkc
chunkc.next = chunkc
} else {
mut t := *h
mut k := size << leftshift_for_tree_index(idx)
for {
if t.chunk().size() != size {
c_ := &t.child[(k >> sizeof(usize) * 8 - 1) & 1]
mut c := &&TreeChunk(c_)
k <<= 1
if !isnil(c) {
t = *c
} else {
*c = chunk
chunk.parent = t
chunkc.next = chunkc
chunkc.prev = chunkc
break
}
} else {
tc := t.chunk()
f := tc.prev
f.next = chunkc
assert !isnil(chunkc)
tc.prev = chunkc
chunkc.prev = f
chunkc.next = tc
chunk.parent = voidptr(0)
break
}
}
}
}
}
[unsafe]
fn (mut dl Dlmalloc) clear_smallmap(idx u32) {
dl.smallmap &= ~(1 << idx)
}
[unsafe]
fn (mut dl Dlmalloc) mark_smallmap(idx u32) {
dl.smallmap |= 1 << idx
}
[unsafe]
fn (mut dl Dlmalloc) smallmap_is_marked(idx u32) bool {
return dl.smallmap & (1 << idx) != 0
}
[unsafe]
fn (mut dl Dlmalloc) clear_treemap(idx u32) {
dl.treemap &= ~(1 << idx)
}
[unsafe]
fn (mut dl Dlmalloc) mark_treemap(idx u32) {
dl.treemap |= 1 << idx
}
[unsafe]
fn (mut dl Dlmalloc) treemap_is_marked(idx u32) bool {
return dl.treemap & (1 << idx) != 0
}
/// malloc behaves as libc malloc, but operates within the given space
[unsafe]
pub fn (mut dl Dlmalloc) malloc(size usize) voidptr {
mut nb := usize(0)
unsafe {
if size <= max_small_request() {
nb = request_2_size(size)
mut idx := small_index(nb)
smallbits := dl.smallmap >> idx
if smallbits & 0b11 != 0 {
idx += ~smallbits & 1
b := dl.smallbin_at(idx)
mut p := b.prev
dl.unlink_first_small_chunk(b, p, idx)
smallsize := small_index2size(idx)
p.set_inuse_and_pinuse(smallsize)
ret := p.to_mem()
return ret
}
if nb > dl.dvsize {
// if there's some other bin with some memory, then we just use
// the next smallest bin
if smallbits != 0 {
leftbits := (smallbits << idx) & left_bits(1 << idx)
leastbit := least_bit(leftbits)
i := u32(bits.trailing_zeros_32(leastbit))
mut b := dl.smallbin_at(i)
mut p := b.prev
dl.unlink_first_small_chunk(b, p, i)
smallsize := small_index2size(i)
rsize := smallsize - nb
if sizeof(usize) != 4 && rsize < min_chunk_size() {
p.set_inuse_and_pinuse(smallsize)
} else {
p.set_size_and_pinuse_of_inuse_chunk(nb)
mut r := p.plus_offset(nb)
r.set_size_and_pinuse_of_free_chunk(size)
dl.replace_dv(r, rsize)
}
ret := p.to_mem()
return ret
} else if dl.treemap != 0 {
mem := dl.tmalloc_small(nb)
if !isnil(mem) {
return mem
}
}
}
} else if size >= dl.max_request {
return voidptr(0)
} else {
nb = pad_request(size)
if dl.treemap != 0 {
mem := dl.tmalloc_large(nb)
if !isnil(mem) {
return mem
}
}
}
// use the `dv` node if we can, splitting it if necessary or otherwise
// exhausting the entire chunk
if nb <= dl.dvsize {
rsize := dl.dvsize - nb
mut p := dl.dv
if rsize >= min_chunk_size() {
dl.dv = p.plus_offset(nb)
dl.dvsize = rsize
mut r := dl.dv
r.set_size_and_pinuse_of_free_chunk(rsize)
p.set_size_and_pinuse_of_inuse_chunk(nb)
} else {
dvs := dl.dvsize
dl.dvsize = 0
dl.dv = voidptr(0)
p.set_inuse_and_pinuse(dvs)
}
return p.to_mem()
}
// Split the top node if we can
if nb < dl.topsize {
dl.topsize -= nb
rsize := dl.topsize
mut p := dl.top
dl.top = p.plus_offset(nb)
mut r := dl.top
r.head = rsize | dlmalloc.pinuse
p.set_size_and_pinuse_of_inuse_chunk(nb)
return p.to_mem()
}
return dl.sys_alloc(nb)
}
}
[unsafe]
fn (mut dl Dlmalloc) init_bins() {
unsafe {
for i in 0 .. dlmalloc.n_small_bins {
mut bin := dl.smallbin_at(i)
bin.prev = bin
bin.next = bin
}
}
}
[unsafe]
fn (mut dl Dlmalloc) init_top(ptr &Chunk, size_ usize) {
offset := align_offset_usize(ptr.to_mem())
mut p := ptr.plus_offset(offset)
size := size_ - offset
dl.top = p
dl.topsize = size
p.head = size | dlmalloc.pinuse
p.plus_offset(size).head = top_foot_size()
dl.trim_check = u32(default_trim_threshold())
}
[unsafe]
fn (mut dl Dlmalloc) sys_alloc(size usize) voidptr {
asize := align_up(size + top_foot_size() + malloc_alignment(), default_granularity())
unsafe {
tbase, mut tsize, flags := dl.system_allocator.alloc(dl.system_allocator.data,
asize)
if isnil(tbase) {
return tbase
}
dl.footprint += tsize
dl.max_footprint = if dl.max_footprint > dl.footprint {
dl.max_footprint
} else {
dl.footprint
}
if isnil(dl.top) {
if isnil(dl.least_addr) || tbase < dl.least_addr {
dl.least_addr = tbase
}
dl.seg.base = tbase
dl.seg.size = tsize
dl.seg.flags = flags
dl.release_checks = dlmalloc.max_release_check_rate
dl.init_bins()
tsize_ := tsize - top_foot_size()
dl.init_top(&Chunk(tbase), tsize_)
} else {
mut sp := &dl.seg
for !isnil(sp) && voidptr(tbase) != voidptr(sp.top()) {
sp = sp.next
}
if !isnil(sp) && !sp.is_extern() && sp.sys_flags() == flags && sp.holds(dl.top) {
sp.size += tsize
ptr := dl.top
size_ := dl.topsize + tsize
dl.init_top(ptr, size_)
} else {
if tbase < dl.least_addr {
dl.least_addr = tbase
} else {
dl.least_addr = dl.least_addr
}
sp = &dl.seg
for !isnil(sp) && sp.base != voidptr(usize(tbase) + tsize) {
sp = sp.next
}
if !isnil(sp) && !sp.is_extern() && sp.sys_flags() == flags {
oldbase := sp.base
sp.base = tbase
sp.size = tsize
return dl.prepend_alloc(tbase, oldbase, size)
} else {
dl.add_segment(tbase, tsize, flags)
}
}
}
if size < dl.topsize {
dl.topsize -= size
rsize := dl.topsize
mut p := dl.top
dl.top = p.plus_offset(size)
mut r := dl.top
r.head = rsize | dlmalloc.pinuse
p.set_size_and_pinuse_of_inuse_chunk(size)
return p.to_mem()
}
}
return voidptr(0)
}
[unsafe]
fn (mut dl Dlmalloc) tmalloc_small(size usize) voidptr {
unsafe {
leastbit := least_bit(dl.treemap)
i := bits.leading_zeros_32(leastbit)
mut v := *dl.treebin_at(u32(i))
mut t := v
mut rsize := t.chunk().size() - size
for {
t = t.leftmost_child()
if isnil(t) {
break
}
trem := t.chunk().size() - size
if trem < rsize {
rsize = trem
v = t
}
}
mut vc := v.chunk()
r := &TreeChunk(vc.plus_offset(size))
if rsize < min_chunk_size() {
vc.set_inuse_and_pinuse(rsize + size)
} else {
mut rc := r.chunk()
vc.set_size_and_pinuse_of_inuse_chunk(size)
rc.set_size_and_pinuse_of_free_chunk(rsize)
dl.replace_dv(rc, rsize)
}
return vc.to_mem()
}
}
[unsafe]
fn (mut dl Dlmalloc) tmalloc_large(size usize) voidptr {
unsafe {
mut v := &TreeChunk(voidptr(0))
mut rsize := ~size + 1
idx := dl.compute_tree_index(size)
mut t := *dl.treebin_at(idx)
if !isnil(t) {
mut sizebits := size << leftshift_for_tree_index(idx)
mut rst := voidptr(0)
for {
csize := t.chunk().size()
if csize >= size && csize - size < rsize {
v = t
rsize = csize - size
if rsize == 0 {
break
}
}
rt := t.child[1]
t = t.child[(sizebits >> (sizeof(usize) * 8 - 1)) & 1]
if !isnil(rt) && voidptr(rt) != voidptr(t) {
rst = rt
}
if isnil(t) {
t = rst
break
}
sizebits <<= 1
}
}
if isnil(t) && isnil(v) {
leftbits := left_bits(1 << idx) & dl.treemap
if leftbits != 0 {
leastbit := least_bit(leftbits)
i := bits.trailing_zeros_32(leastbit)
t = *dl.treebin_at(u32(i))
}
}
// Find the smallest of this tree or subtree
for !isnil(t) {
csize := t.chunk().size()
if csize >= size && csize - size < rsize {
rsize = csize - size
v = t
}
t = t.leftmost_child()
}
if isnil(v) || (dl.dvsize >= size && !(rsize < dl.dvsize - size)) {
return voidptr(0)
}
mut vc := v.chunk()
mut r := vc.plus_offset(size)
dl.unlink_large_chunk(v)
if rsize < min_chunk_size() {
vc.set_inuse_and_pinuse(rsize + size)
} else {
vc.set_size_and_pinuse_of_inuse_chunk(size)
r.set_size_and_pinuse_of_free_chunk(rsize)
dl.insert_chunk(r, rsize)
}
return vc.to_mem()
}
}
[unsafe]
fn (mut dl Dlmalloc) prepend_alloc(newbase voidptr, oldbase voidptr, size usize) voidptr {
unsafe {
mut p := align_as_chunk(newbase)
mut oldfirst := align_as_chunk(oldbase)
psize := usize(oldfirst) - usize(p)
mut q := p.plus_offset(size)
mut qsize := psize - size
p.set_size_and_pinuse_of_inuse_chunk(size)
if voidptr(oldfirst) == voidptr(dl.top) {
dl.topsize += qsize
tsize := dl.topsize
dl.top = q
q.head = tsize | dlmalloc.pinuse
} else if voidptr(oldfirst) == voidptr(dl.dv) {
dl.dvsize += qsize
dsize := dl.dvsize
dl.dv = q
q.set_size_and_pinuse_of_free_chunk(dsize)
} else {
if !oldfirst.inuse() {
nsize := oldfirst.size()
dl.unlink_chunk(oldfirst, nsize)
oldfirst = oldfirst.plus_offset(nsize)
qsize += nsize
}
q.set_free_with_pinuse(qsize, oldfirst)
dl.insert_chunk(q, qsize)
}
ret := p.to_mem()
return ret
}
}
[unsafe]
fn (mut dl Dlmalloc) add_segment(tbase voidptr, tsize usize, flags u32) {
// TODO: what in the world is this function doing????
unsafe {
old_top := dl.top
mut oldsp := dl.segment_holding(old_top)
old_end := oldsp.top()
ssize := pad_request(sizeof(Segment))
mut offset := ssize + sizeof(usize) * 4 + malloc_alignment() - 1
rawsp := voidptr(usize(old_end) - offset)
offset = align_offset_usize((&Chunk(rawsp)).to_mem())
asp := voidptr(usize(rawsp) + offset)
csp := if asp < voidptr(usize(old_top) + min_chunk_size()) { old_top } else { asp }
mut sp := &Chunk(csp)
mut ss := &Segment(sp.to_mem())
mut tnext := sp.plus_offset(ssize)
mut p := tnext
mut nfences := 0
size := tsize - top_foot_size()
dl.init_top(&Chunk(tbase), size)
sp.set_size_and_pinuse_of_inuse_chunk(ssize)
*ss = dl.seg
dl.seg.base = tbase
dl.seg.size = tsize
dl.seg.flags = flags
dl.seg.next = ss
for {
nextp := p.plus_offset(sizeof(usize))
p.head = fencepost_head()
nfences += 1
if nextp.head < old_end {
p = nextp
} else {
break
}
}
// TODO: why 2?
assert nfences >= 2
if voidptr(csp) != voidptr(old_top) {
mut q := &Chunk(old_top)
psize := usize(csp) - usize(old_top)
tn := q.plus_offset(psize)
q.set_free_with_pinuse(psize, tn)
dl.insert_chunk(q, psize)
}
}
}
[unsafe]
fn (mut dl Dlmalloc) segment_holding(ptr voidptr) &Segment {
mut sp := &dl.seg
for !isnil(sp) {
if sp.base <= ptr && ptr < sp.top() {
return sp
}
sp = sp.next
}
return &Segment(0)
}
// realloc behaves as libc realloc, but operates within the given space
[unsafe]
pub fn (mut dl Dlmalloc) realloc(oldmem voidptr, bytes usize) voidptr {
if bytes >= dl.max_request {
return voidptr(0)
}
unsafe {
nb := request_2_size(bytes)
mut oldp := chunk_from_mem(oldmem)
newp := dl.try_realloc_chunk(oldp, nb, true)
if !isnil(newp) {
return newp.to_mem()
}
ptr := dl.malloc(bytes)
if !isnil(ptr) {
oc := oldp.size() - overhead_for(oldp)
copy_bytes := if oc < bytes { oc } else { bytes }
vmemcpy(ptr, oldmem, int(copy_bytes))
}
return ptr
}
}
// memaligns allocates memory aligned to `alignment_`. Only call this with power-of-two alignment
// and alignment > dlmalloc.malloc_alignment
[unsafe]
pub fn (mut dl Dlmalloc) memalign(alignment_ usize, bytes usize) voidptr {
mut alignment := alignment_
if alignment < min_chunk_size() {
alignment = min_chunk_size()
}
if bytes >= max_request() - alignment {
return voidptr(0)
}
unsafe {
nb := request_2_size(bytes)
req := nb + alignment + min_chunk_size() - chunk_overhead()
mem := dl.malloc(req)
if isnil(mem) {
return mem
}
mut p := chunk_from_mem(mem)
if usize(mem) & (alignment - 1) != 0 {
// Here we find an aligned sopt inside the chunk. Since we need to
// give back leading space in a chunk of at least `min_chunk_size`,
// if the first calculation places us at a spot with less than
// `min_chunk_size` leader we can move to the next aligned spot.
// we've allocated enough total room so that this is always possible
br_ := (usize(mem) + alignment - 1) & (~alignment + 1)
br := chunk_from_mem(voidptr(br_))
mut pos := voidptr(0)
if usize(br) - usize(p) > min_chunk_size() {
pos = voidptr(br)
} else {
pos = voidptr(usize(br) + alignment)
}
mut newp := &Chunk(pos)
leadsize := usize(pos) - usize(p)
newsize := p.size() - leadsize
if p.mmapped() {
newp.prev_foot = p.prev_foot + leadsize
newp.head = newsize
} else {
newp.set_inuse(newsize)
p.set_inuse(leadsize)
dl.dispose_chunk(p, leadsize)
}
p = newp
}
if !p.mmapped() {
size := p.size()
if size > nb + min_chunk_size() {
remainder_size := size - nb
mut remainder := p.plus_offset(nb)
p.set_inuse(nb)
remainder.set_inuse(remainder_size)
dl.dispose_chunk(remainder, remainder_size)
}
}
return p.to_mem()
}
}
[unsafe]
fn (mut dl Dlmalloc) try_realloc_chunk(p_ &Chunk, nb usize, can_move bool) &Chunk {
unsafe {
mut p := p_
oldsize := p.size()
mut next := p.plus_offset(oldsize)
if p.mmapped() {
return dl.mmap_resize(p, nb, can_move)
} else if oldsize >= nb {
rsize := oldsize - nb
if rsize >= min_chunk_size() {
mut r := p.plus_offset(nb)
p.set_inuse(nb)
r.set_inuse(rsize)
dl.dispose_chunk(r, rsize)
}
return p
} else if voidptr(next) == voidptr(dl.top) {
if oldsize + dl.topsize <= nb {
return voidptr(0)
}
newsize := oldsize + dl.topsize
newtopsize := newsize - nb
mut newtop := p.plus_offset(nb)
p.set_inuse(nb)
newtop.head = newtopsize | dlmalloc.pinuse
dl.top = newtop
dl.topsize = newtopsize
return p
} else if voidptr(next) == voidptr(dl.dv) {
dvs := dl.dvsize
if oldsize + dvs < nb {
return voidptr(0)
}
dsize := oldsize + dvs - nb
if dsize >= min_chunk_size() {
mut r := p.plus_offset(nb)
mut n := r.plus_offset(dsize)
p.set_inuse(nb)
r.set_size_and_pinuse_of_free_chunk(dsize)
n.clear_pinuse()
dl.dvsize = dsize
dl.dv = r
} else {
newsize := oldsize + dvs
p.set_inuse(newsize)
dl.dvsize = 0
dl.dv = voidptr(0)
}
return p
} else if !next.cinuse() {
nextsize := next.size()
if oldsize + nextsize < nb {
return voidptr(0)
}
rsize := oldsize + nextsize - nb
dl.unlink_chunk(next, nextsize)
if rsize < min_chunk_size() {
newsize := oldsize + nextsize
p.set_inuse(newsize)
} else {
r := p.plus_offset(nb)
p.set_inuse(nb)
r.set_inuse(rsize)
dl.dispose_chunk(r, rsize)
}
return p
} else {
return voidptr(0)
}
}
}
[unsafe]
fn (mut dl Dlmalloc) mmap_resize(oldp_ &Chunk, nb usize, can_move bool) &Chunk {
mut oldp := oldp_
oldsize := oldp.size()
if is_small(nb) {
return voidptr(0)
}
// Keep the old chunk if it's big enough but not too big
if oldsize >= nb + sizeof(usize) && (oldsize - nb) <= (default_granularity() << 1) {
return oldp
}
offset := oldp.prev_foot
oldmmsize := oldsize + offset + mmap_foot_pad()
newmmsize := dl.mmap_align(nb + 6 * sizeof(usize) + malloc_alignment() - 1)
ptr := dl.system_allocator.remap(dl.system_allocator.data, voidptr(usize(oldp) - offset),
oldmmsize, newmmsize, can_move)
if isnil(ptr) {
return voidptr(0)
}
mut newp := &Chunk(voidptr(usize(ptr) + offset))
psize := newmmsize - offset - mmap_foot_pad()
newp.head = psize
newp.plus_offset(psize).head = fencepost_head()
newp.plus_offset(psize + sizeof(usize)).head = 0
if ptr < dl.least_addr {
dl.least_addr = ptr
}
dl.footprint = dl.footprint + newmmsize - oldmmsize
if dl.footprint > dl.max_footprint {
dl.max_footprint = dl.footprint
}
return newp
}
fn (dl &Dlmalloc) mmap_align(a usize) usize {
return align_up(a, dl.system_allocator.page_size(dl.system_allocator.data))
}
[unsafe]
fn (mut dl Dlmalloc) dispose_chunk(p_ &Chunk, psize_ usize) {
mut p := p_
mut psize := psize_
unsafe {
mut next := p.plus_offset(psize)
if !p.pinuse() {
prevsize := p.prev_foot
if p.mmapped() {
psize += prevsize + mmap_foot_pad()
if dl.system_allocator.free_(dl.system_allocator.data, voidptr(usize(p) - prevsize),
psize)
{
dl.footprint -= psize
}
return
}
prev := p.minus_offset(prevsize)
psize += prevsize
p = prev
if voidptr(p) != voidptr(dl.dv) {
dl.unlink_chunk(p, prevsize)
} else if next.head & dlmalloc.inuse == dlmalloc.inuse {
dl.dvsize = psize
p.set_free_with_pinuse(psize, next)
return
}
}
if !next.cinuse() {
if voidptr(next) == voidptr(dl.top) {
dl.topsize += psize
tsize := dl.topsize
dl.top = p
p.head = tsize | dlmalloc.pinuse
if voidptr(p) == voidptr(dl.dv) {
dl.dv = voidptr(0)
dl.dvsize = 0
}
return
} else if voidptr(next) == voidptr(dl.dv) {
dl.dvsize += psize
dvsize := dl.dvsize
dl.dv = p
p.set_size_and_pinuse_of_free_chunk(dvsize)
return
} else {
nsize := next.size()
psize += nsize
dl.unlink_chunk(next, nsize)
p.set_size_and_pinuse_of_free_chunk(psize)
if voidptr(p) == voidptr(dl.dv) {
dl.dvsize = psize
return
}
}
} else {
p.set_free_with_pinuse(psize, next)
}
dl.insert_chunk(p, psize)
}
}