v/vlib/v/parser/parser.v

1823 lines
35 KiB
V

// Copyright (c) 2019-2020 Alexander Medvednikov. All rights reserved.
// Use of this source code is governed by an MIT license
// that can be found in the LICENSE file.
module parser
import (
v.scanner
v.ast
v.token
v.table
v.pref
term
os
filepath
)
const (
colored_output = term.can_show_color_on_stderr()
)
/*
type PrefixParseFn fn()ast.Expr
type InfixParseFn fn(e ast.Expr)ast.Expr
type PostfixParseFn fn()ast.Expr
*/
struct Parser {
scanner &scanner.Scanner
file_name string
mut:
tok token.Token
peek_tok token.Token
// vars []string
table &table.Table
return_type table.Type // current function's return type
is_c bool
//
// prefix_parse_fns []PrefixParseFn
inside_if bool
pref &pref.Preferences // Preferences shared from V struct
builtin_mod bool
mod string
expr_mod string
expected_type table.Type
scope &ast.Scope
imports map[string]string
}
// for tests
pub fn parse_stmt(text string, table &table.Table, scope &ast.Scope) ast.Stmt {
s := scanner.new_scanner(text)
mut p := Parser{
scanner: s
table: table
pref: &pref.Preferences{}
scope: scope
// scope: &ast.Scope{start_pos: 0, parent: 0}
}
p.init_parse_fns()
p.read_first_token()
return p.stmt()
}
pub fn parse_file(path string, table &table.Table) ast.File {
// println('parse_file("$path")')
text := os.read_file(path) or {
panic(err)
}
mut stmts := []ast.Stmt
mut p := Parser{
scanner: scanner.new_scanner(text)
table: table
file_name: path
pref: &pref.Preferences{}
scope: &ast.Scope{
start_pos: 0
parent: 0
}
}
p.read_first_token()
// p.scope = &ast.Scope{start_pos: p.tok.position(), parent: 0}
// module decl
module_decl := if p.tok.kind == .key_module { p.module_decl() } else { ast.Module{name: 'main'
} }
p.mod = module_decl.name
p.builtin_mod = p.mod == 'builtin'
// imports
mut imports := []ast.Import
for p.tok.kind == .key_import {
imports << p.import_stmt()
}
// TODO: import only mode
for {
// res := s.scan()
if p.tok.kind == .eof {
// println('EOF, breaking')
break
}
// println('stmt at ' + p.tok.str())
stmts << p.top_stmt()
}
// println('nr stmts = $stmts.len')
// println(stmts[0])
p.scope.end_pos = p.tok.pos
return ast.File{
path: path
mod: module_decl
imports: imports
stmts: stmts
scope: p.scope
}
}
pub fn parse_files(paths []string, table &table.Table) []ast.File {
mut files := []ast.File
for path in paths {
files << parse_file(path, table)
}
return files
}
pub fn (p &Parser) init_parse_fns() {
// p.prefix_parse_fns = make(100, 100, sizeof(PrefixParseFn))
// p.prefix_parse_fns[token.Kind.name] = parse_name
println('')
}
pub fn (p mut Parser) read_first_token() {
// need to call next() twice to get peek token and current token
p.next()
p.next()
}
pub fn (p mut Parser) open_scope() {
p.scope = &ast.Scope{
parent: p.scope
start_pos: p.tok.pos
}
}
pub fn (p mut Parser) close_scope() {
p.scope.end_pos = p.tok.pos
p.scope.parent.children << p.scope
p.scope = p.scope.parent
}
pub fn (p mut Parser) parse_block() []ast.Stmt {
p.open_scope()
p.check(.lcbr)
mut stmts := []ast.Stmt
if p.tok.kind != .rcbr {
for {
stmts << p.stmt()
// p.warn('after stmt(): tok=$p.tok.str()')
if p.tok.kind in [.eof, .rcbr] {
break
}
}
}
p.check(.rcbr)
// println('parse block')
p.close_scope()
// println('nr exprs in block = $exprs.len')
return stmts
}
fn (p mut Parser) next() {
p.tok = p.peek_tok
p.peek_tok = p.scanner.scan()
// println(p.tok.str())
}
fn (p mut Parser) check(expected token.Kind) {
if p.tok.kind != expected {
s := 'syntax error: unexpected `${p.tok.kind.str()}`, expecting `${expected.str()}`'
p.error(s)
}
p.next()
}
fn (p mut Parser) check_name() string {
name := p.tok.lit
p.check(.name)
return name
}
pub fn (p mut Parser) top_stmt() ast.Stmt {
match p.tok.kind {
.key_pub {
match p.peek_tok.kind {
.key_const {
return p.const_decl()
}
.key_fn {
return p.fn_decl()
}
.key_struct, .key_union, .key_interface {
return p.struct_decl()
}
.key_enum {
return p.enum_decl()
}
.key_type {
return p.type_decl()
}
else {
p.error('wrong pub keyword usage')
return ast.Stmt{}
}
}
}
.lsbr {
return p.attr()
}
.key_global {
return p.global_decl()
}
.key_const {
return p.const_decl()
}
.key_fn {
return p.fn_decl()
}
.key_struct {
return p.struct_decl()
}
.dollar {
return p.comp_if()
}
.hash {
return p.hash()
}
.key_type {
return p.type_decl()
}
.key_enum {
return p.enum_decl()
}
.key_union {
return p.struct_decl()
}
.line_comment {
// p.next()
return ast.LineComment{
text: p.scanner.line_comment
}
}
.mline_comment {
// p.next()
return ast.MultiLineComment{
text: p.scanner.line_comment
}
}
else {
// #printf("");
p.error('parser: bad top level statement ' + p.tok.str())
return ast.Stmt{}
}
}
}
pub fn (p mut Parser) stmt() ast.Stmt {
match p.tok.kind {
.key_assert {
p.next()
expr,_ := p.expr(0)
return ast.AssertStmt{
expr: expr
}
}
.key_mut {
return p.var_decl_and_assign_stmt()
}
.key_for {
return p.for_statement()
}
.key_return {
return p.return_stmt()
}
.dollar {
return p.comp_if()
}
.key_continue, .key_break {
tok := p.tok
p.next()
return ast.BranchStmt{
tok: tok
}
}
.key_unsafe {
p.next()
stmts := p.parse_block()
return ast.UnsafeStmt{
stmts: stmts
}
}
.key_defer {
p.next()
stmts := p.parse_block()
return ast.DeferStmt{
stmts: stmts
}
}
.key_goto {
p.next()
name := p.check_name()
return ast.GotoStmt{
name: name
}
}
else {
// `x := ...`
if p.tok.kind == .name && p.peek_tok.kind in [.decl_assign, .comma] {
return p.var_decl_and_assign_stmt()
}
// `label:`
else if p.tok.kind == .name && p.peek_tok.kind == .colon {
name := p.check_name()
p.check(.colon)
return ast.GotoLabel{
name: name
}
}
// expr,typ := p.expr(0)
expr,_ := p.expr(0)
return ast.ExprStmt{
expr: expr
// typ: typ
}
}
}
}
// TODO: merge wtih AssignStmt & VarDecl
pub fn (p mut Parser) assign_expr(left ast.Expr) ast.AssignExpr {
op := p.tok.kind
p.next()
val,_ := p.expr(0)
node := ast.AssignExpr{
left: left
val: val
op: op
pos: p.tok.position()
}
return node
}
fn (p mut Parser) attr() ast.Attr {
p.check(.lsbr)
if p.tok.kind == .key_if {
p.next()
}
name := p.check_name()
p.check(.rsbr)
return ast.Attr{
name: name
}
}
/*
fn (p mut Parser) range_expr(low ast.Expr) ast.Expr {
// ,table.Type) {
if p.tok.kind != .dotdot {
p.next()
}
p.check(.dotdot)
mut high := ast.Expr{}
if p.tok.kind != .rsbr {
high,_ = p.expr(0)
// if typ.typ.kind != .int {
// p.error('non-integer index `$typ.typ.name`')
// }
}
node := ast.RangeExpr{
low: low
high: high
}
return node
}
*/
/*
pub fn (p mut Parser) assign_stmt() ast.AssignStmt {
name := p.tok.lit
// println('looking for $name')
var := p.table.find_var(name) or {
p.error('assign unknown variable `$name`')
exit(1)
}
if !var.is_mut {
p.error('`$var.name` is immutable, declare it with `mut $var.name := ...`')
}
left_expr,left_type := p.expr(0)
op := p.tok.kind
// println('assignn_stmt() ' + op.str())
p.next()
right_expr,right_type := p.expr(0)
if !p.table.check(left_type, right_type) {
p.error('oops')
}
return ast.AssignStmt{
left: left_expr
right: right_expr
op: op
}
}
*/
pub fn (p &Parser) error(s string) {
print_backtrace()
mut path := p.file_name
// Get relative path
workdir := os.getwd() + filepath.separator
if path.starts_with(workdir) {
path = path.replace(workdir, '')
}
final_msg_line := '$path:$p.tok.line_nr: error: $s'
if colored_output {
eprintln(term.bold(term.red(final_msg_line)))
}
else {
eprintln(final_msg_line)
}
exit(1)
}
pub fn (p &Parser) error_at_line(s string, line_nr int) {
final_msg_line := '$p.file_name:$line_nr: error: $s'
if colored_output {
eprintln(term.bold(term.red(final_msg_line)))
}
else {
eprintln(final_msg_line)
}
exit(1)
}
pub fn (p &Parser) warn(s string) {
final_msg_line := '$p.file_name:$p.tok.line_nr: warning: $s'
if colored_output {
eprintln(term.bold(term.blue(final_msg_line)))
}
else {
eprintln(final_msg_line)
}
}
pub fn (p mut Parser) parse_ident(is_c bool) ast.Ident {
// p.warn('name ')
mut name := p.check_name()
if name == '_' {
return ast.Ident{
name: '_'
kind: .blank_ident
pos: p.tok.position()
}
}
if p.expr_mod.len > 0 {
name = '${p.expr_mod}.$name'
}
mut ident := ast.Ident{
kind: .unresolved
name: name
is_c: is_c
pos: p.tok.position()
}
// variable
if p.expr_mod.len == 0 {
if var := p.scope.find_var(name) {
ident.kind = .variable
ident.info = ast.IdentVar{}
}
}
// handle consts/fns in checker
return ident
}
fn (p mut Parser) struct_init() ast.StructInit {
typ := p.parse_type()
sym := p.table.get_type_symbol(typ)
// p.warn('struct init typ=$sym.name')
p.check(.lcbr)
mut field_names := []string
mut exprs := []ast.Expr
mut i := 0
// TODO `if sym.info is table.Struct`
mut is_struct := false
match sym.info {
table.Struct {
is_struct = true
}
else {}
}
is_short_syntax := !(p.peek_tok.kind == .colon || p.tok.kind == .rcbr) // `Vec{a,b,c}`
// p.warn(is_short_syntax.str())
for p.tok.kind != .rcbr {
mut field_name := ''
if is_short_syntax {
expr,_ := p.expr(0)
exprs << expr
}
else {
field_name = p.check_name()
field_names << field_name
}
// Set expected type for this field's expression
// p.warn('$sym.name field $field_name')
if is_struct {
info := sym.info as table.Struct
if is_short_syntax {}
else {
field := sym.find_field(field_name) or {
p.error('field `${sym.name}.$field_name` not found')
continue
}
p.expected_type = field.typ
}
// p.warn('setting exp $field.typ')
}
if !is_short_syntax {
p.check(.colon)
expr,_ := p.expr(0)
exprs << expr
}
i++
if p.tok.kind == .comma {
p.check(.comma)
}
}
node := ast.StructInit{
typ: typ
exprs: exprs
fields: field_names
pos: p.tok.position()
}
p.check(.rcbr)
return node
}
pub fn (p mut Parser) name_expr() ast.Expr {
mut node := ast.Expr{}
is_c := p.tok.lit == 'C'
mut mod := ''
// p.warn('resetting')
p.expr_mod = ''
// `map[string]int` initialization
if p.tok.lit == 'map' && p.peek_tok.kind == .lsbr {
map_type := p.parse_map_type()
return node
}
if p.peek_tok.kind == .dot && (is_c || p.known_import(p.tok.lit) || p.mod.all_after('.') == p.tok.lit) {
if !is_c {
// prepend the full import
mod = p.imports[p.tok.lit]
}
p.next()
p.check(.dot)
p.expr_mod = mod
}
// p.warn('name expr $p.tok.lit $p.peek_tok.str()')
// fn call or type cast
if p.peek_tok.kind == .lpar {
name := p.tok.lit
// type cast. TODO: finish
// if name in table.builtin_type_names {
if name in p.table.type_idxs && !(name in ['stat', 'sigaction']) {
// TODO handle C.stat()
to_typ := p.parse_type()
p.check(.lpar)
mut expr := ast.Expr{}
expr,_ = p.expr(0)
// TODO, string(b, len)
if p.tok.kind == .comma && table.type_idx(to_typ) == table.string_type_idx {
p.check(.comma)
p.expr(0) // len
}
p.check(.rpar)
node = ast.CastExpr{
typ: to_typ
expr: expr
}
p.expr_mod = ''
return node
}
// fn call
else {
// println('calling $p.tok.lit')
x := p.call_expr(is_c, mod) // TODO `node,typ :=` should work
node = x
}
}
else if p.peek_tok.kind == .lcbr && (p.tok.lit[0].is_capital() || is_c ||
//
p.tok.lit in table.builtin_type_names) &&
//
(p.tok.lit.len == 1 || !p.tok.lit[p.tok.lit.len - 1].is_capital())
//
{
// || p.table.known_type(p.tok.lit)) {
return p.struct_init()
}
else if p.peek_tok.kind == .dot && p.tok.lit[0].is_capital() {
// `Color.green`
mut enum_name := p.check_name()
if mod != '' {
enum_name = mod + '.' + enum_name
}
else {
enum_name = p.prepend_mod(enum_name)
}
// p.warn('Color.green $enum_name ' + p.prepend_mod(enum_name) + 'mod=$mod')
p.check(.dot)
val := p.check_name()
// println('enum val $enum_name . $val')
p.expr_mod = ''
return ast.EnumVal{
enum_name: enum_name // lp.prepend_mod(enum_name)
val: val
pos: p.tok.position()
}
}
else {
mut ident := ast.Ident{}
ident = p.parse_ident(is_c)
node = ident
}
p.expr_mod = ''
return node
}
pub fn (p mut Parser) expr(precedence int) (ast.Expr,table.Type) {
// println('\n\nparser.expr()')
mut typ := table.void_type
mut node := ast.Expr{}
// Prefix
match p.tok.kind {
.name {
node = p.name_expr()
}
.str {
node,typ = p.string_expr()
}
.dot {
// .enum_val
// node,typ = p.enum_val()
node = p.enum_val()
}
.chartoken {
typ = table.byte_type
node = ast.CharLiteral{
val: p.tok.lit
}
p.next()
}
// -1, -a, !x, &x, ~x
.minus, .amp, .mul, .not, .bit_not {
node = p.prefix_expr()
}
// .amp {
// p.next()
// }
.key_true, .key_false {
node = ast.BoolLiteral{
val: p.tok.kind == .key_true
}
typ = table.bool_type
p.next()
}
.key_match {
// node,typ = p.match_expr()
node = p.match_expr()
}
.number {
node,typ = p.parse_number_literal()
}
.lpar {
p.check(.lpar)
node,typ = p.expr(0)
p.check(.rpar)
node = ast.ParExpr{
expr: node
}
}
.key_if {
node = p.if_expr()
}
.lsbr {
node = p.array_init()
}
.key_none {
p.next()
typ = table.none_type
node = ast.None{}
}
.key_sizeof {
p.next() // sizeof
p.check(.lpar)
if p.tok.lit == 'C' {
p.next()
p.check(.dot)
}
if p.tok.kind == .amp {
p.next()
}
type_name := p.check_name()
p.check(.rpar)
node = ast.SizeOf{
type_name: type_name
}
typ = table.int_type
}
// Map `{"age": 20}` or `{ x | foo:bar, a:10 }`
.lcbr {
p.next()
if p.tok.kind == .str {
mut keys := []ast.Expr
mut vals := []ast.Expr
for p.tok.kind != .rcbr && p.tok.kind != .eof {
// p.check(.str)
key,_ := p.expr(0)
keys << key
p.check(.colon)
val,_ := p.expr(0)
vals << val
if p.tok.kind == .comma {
p.next()
}
}
node = ast.MapInit{
keys: keys
vals: vals
pos: p.tok.position()
}
}
else {
name := p.check_name()
mut fields := []string
mut vals := []ast.Expr
p.check(.pipe)
for {
fields << p.check_name()
p.check(.colon)
expr,_ := p.expr(0)
vals << expr
if p.tok.kind == .comma {
p.check(.comma)
}
if p.tok.kind == .rcbr {
break
}
}
node = ast.Assoc{
name: name
fields: fields
exprs: vals
}
}
p.check(.rcbr)
}
else {
p.error('parser: expr(): bad token `$p.tok.str()`')
}
}
// Infix
for precedence < p.tok.precedence() {
if p.tok.kind.is_assign() {
node = p.assign_expr(node)
}
else if p.tok.kind == .dot {
node = p.dot_expr(node, typ)
}
else if p.tok.kind == .lsbr {
node = p.index_expr(node)
}
else if p.tok.kind == .key_as {
p.next()
typ = p.parse_type()
}
else if p.tok.kind.is_infix() {
node,typ = p.infix_expr(node)
}
// Postfix
else if p.tok.kind in [.inc, .dec] {
node = ast.PostfixExpr{
op: p.tok.kind
expr: node
pos: p.tok.position()
}
p.next()
return node,typ
}
else {
return node,typ
}
}
return node,typ
}
fn (p mut Parser) prefix_expr() ast.PrefixExpr {
op := p.tok.kind
p.next()
right,_ := p.expr(1)
return ast.PrefixExpr{
op: op
right: right
}
}
fn (p mut Parser) index_expr(left ast.Expr) ast.IndexExpr {
// left == `a` in `a[0]`
p.next() // [
if p.tok.kind == .dotdot {
// [..end]
p.next()
high,_ := p.expr(0)
p.check(.rsbr)
return ast.IndexExpr{
left: left
pos: p.tok.position()
index: ast.RangeExpr{
low: ast.Expr{}
high: high
}
}
}
expr,_ := p.expr(0) // `[expr]` or `[expr..]`
if p.tok.kind == .dotdot {
// [start..end] or [start..]
p.check(.dotdot)
mut high := ast.Expr{}
if p.tok.kind != .rsbr {
high,_ = p.expr(0)
}
p.check(.rsbr)
return ast.IndexExpr{
left: left
pos: p.tok.position()
index: ast.RangeExpr{
low: expr
high: high
}
}
}
// get the element type
/*
mut typ := left_type
left_type_sym := p.table.get_type_symbol(left_type)
if left_type_sym.kind == .array {
info := left_type_sym.info as table.Array
typ = info.elem_type
}
*/
// [expr]
p.check(.rsbr)
return ast.IndexExpr{
left: left
index: expr
pos: p.tok.position()
}
}
fn (p mut Parser) filter(typ table.Type) {
p.scope.register_var(ast.VarDecl{
name: 'it'
typ: typ
})
}
fn (p mut Parser) dot_expr(left ast.Expr, left_type table.Type) ast.Expr {
p.next()
field_name := p.check_name()
if field_name == 'filter' {
p.open_scope()
p.filter(left_type)
defer {
p.close_scope()
}
}
// Method call
if p.tok.kind == .lpar {
p.next()
args,muts := p.call_args()
mut or_stmts := []ast.Stmt
if p.tok.kind == .key_orelse {
p.next()
or_stmts = p.parse_block()
}
mcall_expr := ast.MethodCallExpr{
expr: left
name: field_name
args: args
muts: muts
pos: p.tok.position()
or_block: ast.OrExpr{
stmts: or_stmts
}
}
mut node := ast.Expr{}
node = mcall_expr
return node
}
sel_expr := ast.SelectorExpr{
expr: left
field: field_name
pos: p.tok.position()
}
mut node := ast.Expr{}
node = sel_expr
return node
}
fn (p mut Parser) infix_expr(left ast.Expr) (ast.Expr,table.Type) {
op := p.tok.kind
// mut typ := p.
// println('infix op=$op.str()')
precedence := p.tok.precedence()
pos := p.tok.position()
p.next()
mut typ := table.Type{}
mut right := ast.Expr{}
right,typ = p.expr(precedence)
if op.is_relational() {
typ = table.bool_type
}
mut expr := ast.Expr{}
expr = ast.InfixExpr{
left: left
right: right
right_type: typ
op: op
pos: pos
}
return expr,typ
}
// Implementation of Pratt Precedence
/*
[inline]
fn (p &Parser) is_addative() bool {
return p.tok.kind in [.plus, .minus] && p.peek_tok.kind in [.number, .name]
}
*/
// `.green`
// `pref.BuildMode.default_mode`
fn (p mut Parser) enum_val() ast.EnumVal {
p.check(.dot)
val := p.check_name()
/*
if p.expected_type == 0 {
p.error('wtf')
}
*/
/*
sym := p.table.get_type_symbol(p.expected_type) //or {
//return ast.EnumVal{val:val}
//}
p.warn(sym.name)
*/
return ast.EnumVal{
val: val
pos: p.tok.position()
}
}
fn (p mut Parser) for_statement() ast.Stmt {
p.check(.key_for)
p.open_scope()
// defer { p.close_scope() }
// Infinite loop
if p.tok.kind == .lcbr {
pos := p.tok.position()
stmts := p.parse_block()
p.close_scope()
return ast.ForStmt{
stmts: stmts
pos: pos
is_inf: true
}
}
else if p.tok.kind == .key_mut {
p.error('`mut` is not required in for loops')
}
// for i := 0; i < 10; i++ {
else if p.peek_tok.kind in [.decl_assign, .assign, .semicolon] || p.tok.kind == .semicolon {
mut init := ast.Stmt{}
mut cond := ast.Expr{}
mut inc := ast.Stmt{}
if p.peek_tok.kind in [.assign, .decl_assign] {
init = p.var_decl_and_assign_stmt()
}
else if p.tok.kind != .semicolon {}
// allow `for ;; i++ {`
// Allow `for i = 0; i < ...`
/*
cond, typ = p.expr(0)
if typ.kind != _bool {
p.error('non-bool used as for condition')
}
*/
// println(1)
// }
p.check(.semicolon)
if p.tok.kind != .semicolon {
mut typ := table.void_type
cond,typ = p.expr(0)
}
p.check(.semicolon)
if p.tok.kind != .lcbr {
inc = p.stmt()
}
stmts := p.parse_block()
p.close_scope()
return ast.ForCStmt{
stmts: stmts
init: init
cond: cond
inc: inc
}
}
// `for i in vals`, `for i in start .. end`
else if p.peek_tok.kind in [.key_in, .comma] {
var_name := p.check_name()
mut val_name := ''
if p.tok.kind == .comma {
p.check(.comma)
val_name = p.check_name()
// p.table.register_var(table.Var{
// name: val_name
// typ: table.int_type
// })
p.scope.register_var(ast.VarDecl{
name: val_name
typ: table.int_type
})
}
p.check(.key_in)
mut elem_type := table.void_type
// arr_expr
cond,arr_typ := p.expr(0)
// array / map
if table.type_idx(arr_typ) == table.string_type_idx {
elem_type = table.byte_type
}
else {
arr_typ_sym := p.table.get_type_symbol(arr_typ)
match arr_typ_sym.info {
table.Array {
elem_type = it.elem_type
}
table.Map {
elem_type = it.value_type
}
else {}
// println(1)
// elem_type_sym := p.table.get_type_symbol(elem_type)
// p.error('cannot loop over type: $elem_type_sym.name')
// }
}
}
// 0 .. 10
// start := p.tok.lit.int()
// TODO use RangeExpr
mut high_expr := ast.Expr{}
mut is_range := false
if p.tok.kind == .dotdot {
is_range = true
p.check(.dotdot)
high_expr,_ = p.expr(0)
}
// p.table.register_var(table.Var{
// name: var_name
// typ: elem_type
// })
p.scope.register_var(ast.VarDecl{
name: var_name
typ: elem_type
})
stmts := p.parse_block()
// println('nr stmts=$stmts.len')
p.close_scope()
return ast.ForInStmt{
stmts: stmts
pos: p.tok.position()
cond: cond
key_var: var_name
val_var: val_name
high: high_expr
is_range: is_range
}
}
// `for cond {`
cond,_ := p.expr(0)
stmts := p.parse_block()
p.close_scope()
return ast.ForStmt{
cond: cond
stmts: stmts
pos: p.tok.position()
}
}
fn (p mut Parser) if_expr() ast.Expr {
p.inside_if = true
// defer {
// }
mut node := ast.Expr{}
p.check(.key_if)
pos := p.tok.position()
// `if x := opt() {`
mut cond := ast.Expr{}
mut is_or := false
if p.peek_tok.kind == .decl_assign {
is_or = true
p.open_scope()
var_name := p.check_name()
// p.table.register_var(
p.check(.decl_assign)
expr,typ := p.expr(0)
p.scope.register_var(ast.VarDecl{
name: var_name
typ: typ
})
cond = ast.IfGuardExpr{
var_name: var_name
expr: expr
}
}
else {
cond,_ = p.expr(0)
}
p.inside_if = false
mut has_else := false
stmts := p.parse_block()
mut else_stmts := []ast.Stmt
if p.tok.kind == .key_else {
p.check(.key_else)
if p.tok.kind == .key_if {
// The next if block is handled by next if_expr()
has_else = true
}
// p.if_expr()
else {
else_stmts = p.parse_block()
}
}
if is_or {
p.close_scope()
}
// mut typ := table.void_type
// mut left := ast.Expr{}
// If the last statement is an expression, return its type
/*
if stmts.len > 0 {
match stmts[stmts.len - 1] {
ast.ExprStmt {
type_sym := p.table.get_type_symbol(it.typ)
p.warn('if expr ret $type_sym.name')
typ = it.typ
// return node,it.ti
// left =
}
else {}
}
}
*/
node = ast.IfExpr{
cond: cond
stmts: stmts
else_stmts: else_stmts
// typ: typ
pos: pos
has_else: has_else
// left: left
}
return node
}
fn (p mut Parser) string_expr() (ast.Expr,table.Type) {
mut node := ast.Expr{}
node = ast.StringLiteral{
val: p.tok.lit
}
if p.peek_tok.kind != .str_dollar {
p.next()
return node,table.string_type
}
// Handle $ interpolation
for p.tok.kind == .str {
p.next()
if p.tok.kind != .str_dollar {
continue
}
p.check(.str_dollar)
p.expr(0)
if p.tok.kind == .colon {
p.next()
}
// ${num:2d}
if p.tok.kind == .number {
p.next()
if p.tok.lit.len == 1 {
p.next()
}
}
}
return node,table.string_type
}
fn (p mut Parser) array_init() ast.ArrayInit {
p.check(.lsbr)
// `[]` - empty array with an automatically deduced type
// p.warn('array_init() exp=$p.expected_type')
/*
if p.expected_type != 0 {
sym := p.table.get_type_symbol(p.expected_type)
println(sym.name)
}
*/
/* TODO: joe
if p.tok.kind == .rsbr && int(p.expected_type) != 0 && p.table.get_type_symbol(p.expected_type).kind == .array {
// p.warn('[] expr')
node = ast.ArrayInit{
// typ: array_type
exprs: []
pos: p.tok.position()
}
p.check(.rsbr)
return node,p.expected_type
}
*/
mut array_type := table.Type(0)
mut exprs := []ast.Expr
// mut is_fixed := false
// mut fixed_size := 0
if p.tok.kind == .rsbr {
// []typ => `[]` and `typ` must be on the same line
line_nr := p.tok.line_nr
p.check(.rsbr)
// []string
if p.tok.kind == .name && p.tok.line_nr == line_nr {
val_type := p.parse_type()
// this is set here becasue its a known type, others could be the
// result of expr so we do those in checker
idx := p.table.find_or_register_array(val_type, 1)
array_type = table.new_type(idx)
}
// []
else {}
// TODO ?
}
else {
// [1,2,3]
for i := 0; p.tok.kind != .rsbr; i++ {
expr,_ := p.expr(0)
exprs << expr
if p.tok.kind == .comma {
p.check(.comma)
}
}
// line_nr := p.tok.line_nr
p.check(.rsbr)
// Fixed size array? (`[100]byte`)
// NOTE: this should be hanled in parse_type() ?
/*
if exprs.len == 1 && p.tok.kind == .name && p.tok.line_nr == line_nr {
is_fixed = true
val_type = p.parse_type()
match exprs[0] {
ast.IntegerLiteral {
fixed_size = it.val
}
else {}
}
p.warn('fixed size array')
}
*/
}
// !
if p.tok.kind == .not {
p.next()
}
if p.tok.kind == .not {
p.next()
}
// idx := if is_fixed { p.table.find_or_register_array_fixed(val_type, fixed_size, 1) } else { p.table.find_or_register_array(val_type, 1) }
// array_type := table.new_type(idx)
return ast.ArrayInit{
typ: array_type
exprs: exprs
pos: p.tok.position()
}
}
fn (p mut Parser) parse_number_literal() (ast.Expr,table.Type) {
lit := p.tok.lit
mut node := ast.Expr{}
mut typ := table.int_type
if lit.contains('.') {
node = ast.FloatLiteral{
// val: lit.f64()
val: lit
}
typ = table.f64_type
}
else {
node = ast.IntegerLiteral{
val: lit.int()
}
}
p.next()
return node,typ
}
fn (p mut Parser) module_decl() ast.Module {
p.check(.key_module)
mod := p.check_name()
full_mod := p.table.qualify_module(mod, p.file_name)
p.mod = full_mod
return ast.Module{
name: full_mod
}
}
fn (p mut Parser) parse_import() ast.Import {
mut mod_name := p.check_name()
mut mod_alias := mod_name
for p.tok.kind == .dot {
p.check(.dot)
submod_name := p.check_name()
mod_name += '.' + submod_name
mod_alias = submod_name
}
if p.tok.kind == .key_as {
p.check(.key_as)
mod_alias = p.check_name()
}
p.imports[mod_alias] = mod_name
p.table.imports << mod_name
return ast.Import{
mod: mod_name
alias: mod_alias
pos: p.tok.position()
}
}
fn (p mut Parser) import_stmt() []ast.Import {
p.check(.key_import)
mut imports := []ast.Import
if p.tok.kind == .lpar {
p.check(.lpar)
for p.tok.kind != .rpar {
imports << p.parse_import()
}
p.check(.rpar)
}
else {
imports << p.parse_import()
}
return imports
}
fn (p mut Parser) const_decl() ast.ConstDecl {
is_pub := p.tok.kind == .key_pub
if is_pub {
p.next()
}
p.check(.key_const)
p.check(.lpar)
mut fields := []ast.Field
mut exprs := []ast.Expr
for p.tok.kind != .rpar {
name := p.prepend_mod(p.check_name())
// println('!!const: $name')
p.check(.assign)
expr,typ := p.expr(0)
fields << ast.Field{
name: name
typ: typ
}
exprs << expr
p.table.register_const(table.Var{
name: name
typ: typ
})
}
p.check(.rpar)
return ast.ConstDecl{
fields: fields
exprs: exprs
is_pub: is_pub
}
}
// structs and unions
fn (p mut Parser) struct_decl() ast.StructDecl {
is_pub := p.tok.kind == .key_pub
if is_pub {
p.next()
}
if p.tok.kind == .key_struct {
p.check(.key_struct)
}
else {
p.check(.key_union)
}
is_c := p.tok.lit == 'C' && p.peek_tok.kind == .dot
if is_c {
p.next() // C
p.next() // .
}
name := p.check_name()
p.check(.lcbr)
mut ast_fields := []ast.Field
mut fields := []table.Field
mut mut_pos := -1
mut pub_pos := -1
mut pub_mut_pos := -1
for p.tok.kind != .rcbr {
if p.tok.kind == .key_pub {
p.check(.key_pub)
if p.tok.kind == .key_mut {
p.check(.key_mut)
pub_mut_pos = fields.len
}
else {
pub_pos = fields.len
}
p.check(.colon)
}
else if p.tok.kind == .key_mut {
p.check(.key_mut)
p.check(.colon)
mut_pos = fields.len
}
field_name := p.check_name()
// p.warn('field $field_name')
typ := p.parse_type()
// Default value
if p.tok.kind == .assign {
p.next()
p.expr(0)
}
ast_fields << ast.Field{
name: field_name
typ: typ
}
fields << table.Field{
name: field_name
typ: typ
}
// println('struct field $ti.name $field_name')
}
p.check(.rcbr)
t := table.TypeSymbol{
kind: .struct_
name: p.prepend_mod(name)
info: table.Struct{
fields: fields
}
}
mut ret := 0
if p.builtin_mod && t.name in table.builtin_type_names {
// this allows overiding the builtins type
// with the real struct type info parsed from builtin
ret = p.table.register_builtin_type_symbol(t)
}
else {
ret = p.table.register_type_symbol(t)
}
if ret == -1 {
p.error('cannot register type `$name`, another type with this name exists')
}
p.expr_mod = ''
return ast.StructDecl{
name: name
is_pub: is_pub
fields: ast_fields
pos: p.tok.position()
mut_pos: mut_pos
pub_pos: pub_pos
pub_mut_pos: pub_mut_pos
}
}
fn (p mut Parser) return_stmt() ast.Return {
p.next()
// return expressions
mut exprs := []ast.Expr
// return type idents
// mut got_tis := []table.Type
if table.type_idx(p.return_type) == table.void_type_idx {
return ast.Return{
pos: p.tok.position()
}
}
for {
// expr,ti := p.expr(0)
expr,_ := p.expr(0)
exprs << expr
// got_tis << ti
if p.tok.kind == .comma {
p.check(.comma)
}
else {
break
}
}
stmt := ast.Return{
expected_type: p.return_type
exprs: exprs
pos: p.tok.position()
}
return stmt
}
// left hand side of `=` or `:=` in `a,b,c := 1,2,3`
fn (p mut Parser) parse_assign_lhs() []ast.Ident {
mut idents := []ast.Ident
for {
is_mut := p.tok.kind == .key_mut
if is_mut {
p.check(.key_mut)
}
is_static := p.tok.kind == .key_static
if is_static {
p.check(.key_static)
}
mut ident := p.parse_ident(false)
ident.info = ast.IdentVar{
is_mut: is_mut
is_static: is_static
}
idents << ident
if p.tok.kind == .comma {
p.check(.comma)
}
else {
break
}
}
return idents
}
// right hand side of `=` or `:=` in `a,b,c := 1,2,3`
fn (p mut Parser) parse_assign_rhs() []ast.Expr {
mut exprs := []ast.Expr
for {
expr,_ := p.expr(0)
exprs << expr
if p.tok.kind == .comma {
p.check(.comma)
}
else {
break
}
}
return exprs
}
fn (p mut Parser) var_decl_and_assign_stmt() ast.Stmt {
idents := p.parse_assign_lhs()
op := p.tok.kind
p.next() // :=, =
exprs := p.parse_assign_rhs()
is_decl := op == .decl_assign
// VarDecl
if idents.len == 1 {
ident := idents[0]
expr := exprs[0]
info0 := ident.var_info()
known_var := p.scope.known_var(ident.name)
if !is_decl && !known_var {
p.error('unknown variable `$ident.name`')
}
if is_decl && ident.kind != .blank_ident {
if known_var {
p.error('redefinition of `$ident.name`')
}
p.scope.register_var(ast.VarDecl{
name: ident.name
expr: expr
})
}
return ast.VarDecl{
name: ident.name
// name2: name2
expr: expr // p.expr(token.lowest_prec)
is_mut: info0.is_mut
// typ: typ
pos: p.tok.position()
}
// return p.var_decl(ident[0], exprs[0])
}
// AssignStmt
for ident in idents {
if is_decl && ident.kind != .blank_ident {
if p.scope.known_var(ident.name) {
p.error('redefinition of `$ident.name`')
}
p.scope.register_var(ast.VarDecl{
name: ident.name
})
}
}
return ast.AssignStmt{
left: idents
right: exprs
op: op
pos: p.tok.position()
}
}
// pub fn (p mut Parser) assign_stmt() ast.AssignStmt {}
// fn (p mut Parser) var_decl() ast.VarDecl {}
fn (p mut Parser) hash() ast.HashStmt {
p.next()
return ast.HashStmt{
name: p.tok.lit
}
}
fn (p mut Parser) global_decl() ast.GlobalDecl {
if !p.pref.translated && !p.pref.is_live && !p.builtin_mod && !p.pref.building_v && p.mod != 'ui' && p.mod != 'gg2' && p.mod != 'uiold' && !os.getwd().contains('/volt') && !p.pref.enable_globals {
p.error('use `v --enable-globals ...` to enable globals')
}
p.next()
name := p.check_name()
println(name)
typ := p.parse_type()
if p.tok.kind == .assign {
p.next()
p.expr(0)
}
p.table.register_global(name, typ)
// p.genln(p.table.cgen_name_type_pair(name, typ))
/*
mut g := p.table.cgen_name_type_pair(name, typ)
if p.tok == .assign {
p.next()
g += ' = '
_,expr := p.tmp_expr()
g += expr
}
// p.genln('; // global')
g += '; // global'
if !p.cgen.nogen {
p.cgen.consts << g
}
*/
return ast.GlobalDecl{
name: name
}
}
fn (p mut Parser) match_expr() ast.Expr {
p.check(.key_match)
is_mut := p.tok.kind == .key_mut
if is_mut {
p.next()
}
cond,_ := p.expr(0)
// sym := p.table.get_type_symbol(typ)
// p.warn('match typ $sym.name')
p.check(.lcbr)
mut blocks := []ast.StmtBlock
mut match_exprs := []ast.Expr
// mut return_type := table.void_type
for {
// Sum type match
if p.tok.kind == .name && (p.tok.lit[0].is_capital() || p.peek_tok.kind == .dot) {
// if sym.kind == .sum_type {
// p.warn('is sum')
// p.parse_type()
p.check_name()
if p.tok.kind == .dot {
p.check(.dot)
p.check_name()
}
}
else {
// Expression match
for {
match_expr,_ := p.expr(0)
match_exprs << match_expr
if p.tok.kind != .comma {
break
}
p.check(.comma)
}
}
// p.warn('match block')
stmts := p.parse_block()
blocks << ast.StmtBlock{
stmts: stmts
}
if p.tok.kind == .key_else {
p.next()
blocks << ast.StmtBlock{
stmts: p.parse_block()
}
}
// If the last statement is an expression, return its type
/*
if stmts.len > 0 {
match stmts[stmts.len - 1] {
ast.ExprStmt {
type_sym := p.table.get_type_symbol(it.typ)
p.warn('match expr ret $type_sym.name')
return_type = it.typ
}
else {}
}
}
*/
if p.tok.kind == .rcbr {
break
}
}
p.check(.rcbr)
mut node := ast.Expr{}
node = ast.MatchExpr{
blocks: blocks
match_exprs: match_exprs
// typ: typ
cond: cond
}
return node
// return node,return_type
}
fn (p mut Parser) enum_decl() ast.EnumDecl {
is_pub := p.tok.kind == .key_pub
if is_pub {
p.next()
}
p.check(.key_enum)
name := p.check_name()
p.check(.lcbr)
mut vals := []string
for p.tok.kind != .eof && p.tok.kind != .rcbr {
val := p.check_name()
vals << val
// p.warn('enum val $val')
if p.tok.kind == .assign {
p.next()
p.expr(0)
}
}
p.check(.rcbr)
p.table.register_type_symbol(table.TypeSymbol{
kind: .enum_
name: p.prepend_mod(name)
info: table.Enum{
vals: vals
}
})
return ast.EnumDecl{
name: name
is_pub: is_pub
vals: vals
}
}
fn (p mut Parser) type_decl() ast.TypeDecl {
is_pub := p.tok.kind == .key_pub
if is_pub {
p.next()
}
p.check(.key_type)
name := p.check_name()
mut is_sum := false
// type SumType = A | B | c
if p.tok.kind == .assign {
p.next()
for {
p.check_name()
if p.tok.kind != .pipe {
break
}
p.check(.pipe)
is_sum = true
}
}
else {
p.parse_type()
}
p.table.register_type_symbol(table.TypeSymbol{
kind: .sum_type
name: name
info: table.Alias{
foo: ''
}
})
return ast.TypeDecl{
name: name
}
}
fn verror(s string) {
println(s)
exit(1)
}