v/vlib/builtin/builtin.c.v

404 lines
11 KiB
V

module builtin
type FnExitCb = fn ()
fn C.atexit(f FnExitCb) int
// exit terminates execution immediately and returns exit `code` to the shell.
pub fn exit(code int) {
C.exit(code)
}
fn vcommithash() string {
return unsafe { tos5(&char(C.V_CURRENT_COMMIT_HASH)) }
}
// panic_debug private function that V uses for panics, -cg/-g is passed
// recent versions of tcc print nicer backtraces automatically
// NB: the duplication here is because tcc_backtrace should be called directly
// inside the panic functions.
fn panic_debug(line_no int, file string, mod string, fn_name string, s string) {
// NB: the order here is important for a stabler test output
// module is less likely to change than function, etc...
// During edits, the line number will change most frequently,
// so it is last
$if freestanding {
bare_panic(s)
} $else {
eprintln('================ V panic ================')
eprintln(' module: $mod')
eprintln(' function: ${fn_name}()')
eprintln(' message: $s')
eprintln(' file: $file:$line_no')
eprintln(' v hash: $vcommithash()')
eprintln('=========================================')
$if exit_after_panic_message ? {
C.exit(1)
} $else $if no_backtrace ? {
C.exit(1)
} $else {
$if tinyc {
$if panics_break_into_debugger ? {
break_if_debugger_attached()
} $else {
C.tcc_backtrace(c'Backtrace')
}
C.exit(1)
}
print_backtrace_skipping_top_frames(1)
$if panics_break_into_debugger ? {
break_if_debugger_attached()
}
C.exit(1)
}
}
}
pub fn panic_optional_not_set(s string) {
panic('optional not set ($s)')
}
// panic prints a nice error message, then exits the process with exit code of 1.
// It also shows a backtrace on most platforms.
pub fn panic(s string) {
$if freestanding {
bare_panic(s)
} $else {
eprint('V panic: ')
eprintln(s)
eprintln('v hash: $vcommithash()')
$if exit_after_panic_message ? {
C.exit(1)
} $else $if no_backtrace ? {
C.exit(1)
} $else {
$if tinyc {
$if panics_break_into_debugger ? {
break_if_debugger_attached()
} $else {
C.tcc_backtrace(c'Backtrace')
}
C.exit(1)
}
print_backtrace_skipping_top_frames(1)
$if panics_break_into_debugger ? {
break_if_debugger_attached()
}
C.exit(1)
}
}
}
// eprintln prints a message with a line end, to stderr. Both stderr and stdout are flushed.
pub fn eprintln(s string) {
$if freestanding {
// flushing is only a thing with C.FILE from stdio.h, not on the syscall level
if s.str == 0 {
bare_eprint(c'eprintln(NIL)\n', 14)
} else {
bare_eprint(s.str, u64(s.len))
bare_eprint(c'\n', 1)
}
} $else $if ios {
if s.str == 0 {
C.WrappedNSLog(c'eprintln(NIL)\n')
} else {
C.WrappedNSLog(s.str)
}
} $else {
C.fflush(C.stdout)
C.fflush(C.stderr)
// eprintln is used in panics, so it should not fail at all
$if android {
if s.str == 0 {
C.fprintf(C.stderr, c'eprintln(NIL)\n')
} else {
C.fprintf(C.stderr, c'%.*s\n', s.len, s.str)
}
}
if s.str == 0 {
_ = C.write(2, c'eprintln(NIL)\n', 14)
} else {
_ = C.write(2, s.str, s.len)
_ = C.write(2, c'\n', 1)
}
C.fflush(C.stderr)
}
}
// eprint prints a message to stderr. Both stderr and stdout are flushed.
pub fn eprint(s string) {
$if freestanding {
// flushing is only a thing with C.FILE from stdio.h, not on the syscall level
if s.str == 0 {
bare_eprint(c'eprint(NIL)\n', 12)
} else {
bare_eprint(s.str, u64(s.len))
}
} $else $if ios {
// TODO: Implement a buffer as NSLog doesn't have a "print"
if s.str == 0 {
C.WrappedNSLog(c'eprint(NIL)')
} else {
C.WrappedNSLog(s.str)
}
} $else {
C.fflush(C.stdout)
C.fflush(C.stderr)
$if android {
if s.str == 0 {
C.fprintf(C.stderr, c'eprint(NIL)')
} else {
C.fprintf(C.stderr, c'%.*s', s.len, s.str)
}
}
if s.str == 0 {
_ = C.write(2, c'eprint(NIL)', 11)
} else {
_ = C.write(2, s.str, s.len)
}
C.fflush(C.stderr)
}
}
// print prints a message to stdout. Unlike `println` stdout is not automatically flushed.
// A call to `flush()` will flush the output buffer to stdout.
pub fn print(s string) {
$if android { // android print for logcat
C.fprintf(C.stdout, c'%.*s', s.len, s.str)
}
$if ios { // no else if because we also need console output on android
// TODO: Implement a buffer as NSLog doesn't have a "print"
C.WrappedNSLog(s.str)
} $else $if freestanding {
bare_print(s.str, u64(s.len))
} $else {
_ = C.write(1, s.str, s.len)
}
}
// println prints a message with a line end, to stdout. stdout is flushed.
pub fn println(s string) {
if s.str == 0 {
$if android {
C.fprintf(C.stdout, c'println(NIL)\n')
} $else $if ios {
C.WrappedNSLog(c'println(NIL)')
} $else $if freestanding {
bare_print(c'println(NIL)\n', 13)
} $else {
_ = C.write(1, c'println(NIL)\n', 13)
}
return
}
$if android { // android print for logcat
C.fprintf(C.stdout, c'%.*s\n', s.len, s.str)
}
$if ios { // no else if because we also need console output on android
C.WrappedNSLog(s.str)
} $else $if freestanding {
bare_print(s.str, u64(s.len))
bare_print(c'\n', 1)
} $else {
_ = C.write(1, s.str, s.len)
_ = C.write(1, c'\n', 1)
}
}
__global total_m = i64(0)
// malloc dynamically allocates a `n` bytes block of memory on the heap.
// malloc returns a `byteptr` pointing to the memory address of the allocated space.
// unlike the `calloc` family of functions - malloc will not zero the memory block.
[unsafe]
pub fn malloc(n int) &byte {
if n <= 0 {
panic('> V malloc(<=0)')
}
$if vplayground ? {
if n > 10000 {
panic('allocating more than 10 KB is not allowed in the playground')
}
}
$if trace_malloc ? {
total_m += n
C.fprintf(C.stderr, c'v_malloc %6d total %10d\n', n, total_m)
// print_backtrace()
}
mut res := &byte(0)
$if prealloc {
return unsafe { prealloc_malloc(n) }
} $else $if gcboehm ? {
unsafe {
res = C.GC_MALLOC(n)
}
} $else $if freestanding {
mut e := Errno{}
res, e = mm_alloc(u64(n))
if e != .enoerror {
eprint('malloc() failed: ')
eprintln(e.str())
panic('malloc() failed')
}
} $else {
res = unsafe { C.malloc(n) }
}
if res == 0 {
panic('malloc($n) failed')
}
$if debug_malloc ? {
// Fill in the memory with something != 0, so it is easier to spot
// when the calling code wrongly relies on it being zeroed.
unsafe { C.memset(res, 0x88, n) }
}
return res
}
// v_realloc resizes the memory block `b` with `n` bytes.
// The `b byteptr` must be a pointer to an existing memory block
// previously allocated with `malloc`, `v_calloc` or `vcalloc`.
// Please, see also realloc_data, and use it instead if possible.
[unsafe]
pub fn v_realloc(b &byte, n int) &byte {
mut new_ptr := &byte(0)
$if prealloc {
unsafe {
new_ptr = malloc(n)
C.memcpy(new_ptr, b, n)
}
return new_ptr
} $else $if gcboehm ? {
new_ptr = unsafe { C.GC_REALLOC(b, n) }
} $else {
new_ptr = unsafe { C.realloc(b, n) }
}
if new_ptr == 0 {
panic('realloc($n) failed')
}
return new_ptr
}
// realloc_data resizes the memory block pointed by `old_data` to `new_size`
// bytes. `old_data` must be a pointer to an existing memory block, previously
// allocated with `malloc`, `v_calloc` or `vcalloc`, of size `old_data`.
// realloc_data returns a pointer to the new location of the block.
// NB: if you know the old data size, it is preferable to call `realloc_data`,
// instead of `v_realloc`, at least during development, because `realloc_data`
// can make debugging easier, when you compile your program with
// `-d debug_realloc`.
[unsafe]
pub fn realloc_data(old_data &byte, old_size int, new_size int) &byte {
$if prealloc {
return unsafe { prealloc_realloc(old_data, old_size, new_size) }
}
$if debug_realloc ? {
// NB: this is slower, but helps debugging memory problems.
// The main idea is to always force reallocating:
// 1) allocate a new memory block
// 2) copy the old to the new
// 3) fill the old with 0x57 (`W`)
// 4) free the old block
// => if there is still a pointer to the old block somewhere
// it will point to memory that is now filled with 0x57.
unsafe {
new_ptr := malloc(new_size)
min_size := if old_size < new_size { old_size } else { new_size }
C.memcpy(new_ptr, old_data, min_size)
C.memset(old_data, 0x57, old_size)
free(old_data)
return new_ptr
}
}
mut nptr := &byte(0)
$if gcboehm ? {
nptr = unsafe { C.GC_REALLOC(old_data, new_size) }
} $else {
nptr = unsafe { C.realloc(old_data, new_size) }
}
if nptr == 0 {
panic('realloc_data($old_data, $old_size, $new_size) failed')
}
return nptr
}
// vcalloc dynamically allocates a zeroed `n` bytes block of memory on the heap.
// vcalloc returns a `byteptr` pointing to the memory address of the allocated space.
// Unlike `v_calloc` vcalloc checks for negative values given in `n`.
pub fn vcalloc(n int) &byte {
if n < 0 {
panic('calloc(<0)')
} else if n == 0 {
return &byte(0)
}
$if prealloc {
return unsafe { prealloc_calloc(n) }
} $else $if gcboehm ? {
return unsafe { &byte(C.GC_MALLOC(n)) }
} $else {
return unsafe { C.calloc(1, n) }
}
}
// special versions of the above that allocate memory which is not scanned
// for pointers (but is collected) when the Boehm garbage collection is used
pub fn vcalloc_noscan(n int) &byte {
$if prealloc {
return unsafe { prealloc_calloc(n) }
} $else $if gcboehm ? {
$if vplayground ? {
if n > 10000 {
panic('allocating more than 10 KB is not allowed in the playground')
}
}
if n < 0 {
panic('calloc(<0)')
}
return unsafe { &byte(C.memset(C.GC_MALLOC_ATOMIC(n), 0, n)) }
} $else {
return unsafe { vcalloc(n) }
}
}
// free allows for manually freeing memory allocated at the address `ptr`.
[unsafe]
pub fn free(ptr voidptr) {
$if prealloc {
return
} $else $if gcboehm ? {
// It is generally better to leave it to Boehm's gc to free things.
// Calling C.GC_FREE(ptr) was tried initially, but does not work
// well with programs that do manual management themselves.
//
// The exception is doing leak detection for manual memory management:
$if gcboehm_leak ? {
unsafe { C.GC_FREE(ptr) }
}
} $else {
C.free(ptr)
}
}
// memdup dynamically allocates a `sz` bytes block of memory on the heap
// memdup then copies the contents of `src` into the allocated space and
// returns a pointer to the newly allocated space.
[unsafe]
pub fn memdup(src voidptr, sz int) voidptr {
if sz == 0 {
return vcalloc(1)
}
unsafe {
mem := malloc(sz)
return C.memcpy(mem, src, sz)
}
}
[inline]
fn v_fixed_index(i int, len int) int {
$if !no_bounds_checking ? {
if i < 0 || i >= len {
s := 'fixed array index out of range (index: $i, len: $len)'
panic(s)
}
}
return i
}