v/vlib/crypto/aes/block_generic.v

201 lines
6.8 KiB
V

// Copyright (c) 2019 Alexander Medvednikov. All rights reserved.
// Use of this source code is governed by an MIT license
// that can be found in the LICENSE file.
// This implementation is derived from the golang implementation
// which itself is derived in part from the reference
// ANSI C implementation, which carries the following notice:
//
// rijndael-alg-fst.c
//
// @version 3.0 (December 2000)
//
// Optimised ANSI C code for the Rijndael cipher (now AES)
//
// @author Vincent Rijmen <vincent.rijmen@esat.kuleuven.ac.be>
// @author Antoon Bosselaers <antoon.bosselaers@esat.kuleuven.ac.be>
// @author Paulo Barreto <paulo.barreto@Terra.com.br>
//
// This code is hereby placed in the public domain.
//
// THIS SOFTWARE IS PROVIDED BY THE AUTHORS ''AS IS'' AND ANY EXPRESS
// OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
// BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
// WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
// OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
// EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// See FIPS 197 for specification, and see Daemen and Rijmen's Rijndael submission
// for implementation details.
// https://csrc.nist.gov/csrc/media/publications/fips/197/final/documents/fips-197.pdf
// https://csrc.nist.gov/archive/aes/rijndael/Rijndael-ammended.pdf
module aes
import (
encoding.binary
)
// Encrypt one block from src into dst, using the expanded key xk.
fn encrypt_block_generic(xk []u32, dst, src []byte) {
_ = src[15] // early bounds check
mut s0 := binary.big_endian_u32(src.left(4))
mut s1 := binary.big_endian_u32(src.slice(4, 8))
mut s2 := binary.big_endian_u32(src.slice(8, 12))
mut s3 := binary.big_endian_u32(src.slice(12, 16))
// First round just XORs input with key.
s0 ^= xk[0]
s1 ^= xk[1]
s2 ^= xk[2]
s3 ^= xk[3]
// Middle rounds shuffle using tables.
// Number of rounds is set by length of expanded key.
nr := xk.len/4 - 2 // - 2: one above, one more below
mut k := 4
mut t0 := u32(0)
mut t1 := u32(0)
mut t2 := u32(0)
mut t3 := u32(0)
for r := 0; r < nr; r++ {
t0 = xk[k+0] ^ te0[byte(s0>>24)] ^ te1[byte(s1>>16)] ^ te2[byte(s2>>8)] ^ u32(te3[byte(s3)])
t1 = xk[k+1] ^ te0[byte(s1>>24)] ^ te1[byte(s2>>16)] ^ te2[byte(s3>>8)] ^ u32(te3[byte(s0)])
t2 = xk[k+2] ^ te0[byte(s2>>24)] ^ te1[byte(s3>>16)] ^ te2[byte(s0>>8)] ^ u32(te3[byte(s1)])
t3 = xk[k+3] ^ te0[byte(s3>>24)] ^ te1[byte(s0>>16)] ^ te2[byte(s1>>8)] ^ u32(te3[byte(s2)])
k += 4
s0 = t0
s1 = t1
s2 = t2
s3 = t3
}
// Last round uses s-box directly and XORs to produce output.
s0 = s_box0[t0>>24]<<24 | s_box0[t1>>16&0xff]<<16 | u32(s_box0[t2>>8&0xff]<<8) | s_box0[t3&u32(0xff)]
s1 = s_box0[t1>>24]<<24 | s_box0[t2>>16&0xff]<<16 | u32(s_box0[t3>>8&0xff]<<8) | s_box0[t0&u32(0xff)]
s2 = s_box0[t2>>24]<<24 | s_box0[t3>>16&0xff]<<16 | u32(s_box0[t0>>8&0xff]<<8) | s_box0[t1&u32(0xff)]
s3 = s_box0[t3>>24]<<24 | s_box0[t0>>16&0xff]<<16 | u32(s_box0[t1>>8&0xff]<<8) | s_box0[t2&u32(0xff)]
s0 ^= xk[k+0]
s1 ^= xk[k+1]
s2 ^= xk[k+2]
s3 ^= xk[k+3]
_ = dst[15] // early bounds check
binary.big_endian_put_u32(mut dst.left(4), s0)
binary.big_endian_put_u32(mut dst.slice(4, 8), s1)
binary.big_endian_put_u32(mut dst.slice(8, 12), s2)
binary.big_endian_put_u32(mut dst.slice(12, 16), s3)
}
// Decrypt one block from src into dst, using the expanded key xk.
fn decrypt_block_generic(xk []u32, dst, src []byte) {
_ = src[15] // early bounds check
mut s0 := binary.big_endian_u32(src.left(4))
mut s1 := binary.big_endian_u32(src.slice(4, 8))
mut s2 := binary.big_endian_u32(src.slice(8, 12))
mut s3 := binary.big_endian_u32(src.slice(12, 16))
// First round just XORs input with key.
s0 ^= xk[0]
s1 ^= xk[1]
s2 ^= xk[2]
s3 ^= xk[3]
// Middle rounds shuffle using tables.
// Number of rounds is set by length of expanded key.
nr := xk.len/4 - 2 // - 2: one above, one more below
mut k := 4
mut t0 := u32(0)
mut t1 := u32(0)
mut t2 := u32(0)
mut t3 := u32(0)
for r := 0; r < nr; r++ {
t0 = xk[k+0] ^ td0[byte(s0>>24)] ^ td1[byte(s3>>16)] ^ td2[byte(s2>>8)] ^ u32(td3[byte(s1)])
t1 = xk[k+1] ^ td0[byte(s1>>24)] ^ td1[byte(s0>>16)] ^ td2[byte(s3>>8)] ^ u32(td3[byte(s2)])
t2 = xk[k+2] ^ td0[byte(s2>>24)] ^ td1[byte(s1>>16)] ^ td2[byte(s0>>8)] ^ u32(td3[byte(s3)])
t3 = xk[k+3] ^ td0[byte(s3>>24)] ^ td1[byte(s2>>16)] ^ td2[byte(s1>>8)] ^ u32(td3[byte(s0)])
k += 4
s0 = t0
s1 = t1
s2 = t2
s3 = t3
}
// Last round uses s-box directly and XORs to produce output.
s0 = u32(s_box1[t0>>24])<<24 | u32(s_box1[t3>>16&0xff])<<16 | u32(s_box1[t2>>8&0xff]<<8) | u32(s_box1[t1&u32(0xff)])
s1 = u32(s_box1[t1>>24])<<24 | u32(s_box1[t0>>16&0xff])<<16 | u32(s_box1[t3>>8&0xff]<<8) | u32(s_box1[t2&u32(0xff)])
s2 = u32(s_box1[t2>>24])<<24 | u32(s_box1[t1>>16&0xff])<<16 | u32(s_box1[t0>>8&0xff]<<8) | u32(s_box1[t3&u32(0xff)])
s3 = u32(s_box1[t3>>24])<<24 | u32(s_box1[t2>>16&0xff])<<16 | u32(s_box1[t1>>8&0xff]<<8) | u32(s_box1[t0&u32(0xff)])
s0 ^= xk[k+0]
s1 ^= xk[k+1]
s2 ^= xk[k+2]
s3 ^= xk[k+3]
_ = dst[15] // early bounds check
binary.big_endian_put_u32(mut dst.left(4), s0)
binary.big_endian_put_u32(mut dst.slice(4, 8), s1)
binary.big_endian_put_u32(mut dst.slice(8, 12), s2)
binary.big_endian_put_u32(mut dst.slice(12, 16), s3)
}
// Apply s_box0 to each byte in w.
fn subw(w u32) u32 {
return u32(s_box0[w>>24])<<24 |
u32(s_box0[w>>16&0xff]<<16) |
u32(s_box0[w>>8&0xff]<<8) |
u32(s_box0[w&u32(0xff)])
}
// Rotate
fn rotw(w u32) u32 { return u32(w<<8) | u32(w>>24) }
// Key expansion algorithm. See FIPS-197, Figure 11.
// Their rcon[i] is our powx[i-1] << 24.
fn expand_key_generic(key []byte, enc mut []u32, dec mut []u32) {
// Encryption key setup.
mut i := 0
nk := key.len / 4
for i = 0; i < nk; i++ {
if 4*i >= key.len {
break
}
enc[i] = binary.big_endian_u32(key.right(4*i))
}
for i < enc.len {
mut t := enc[i-1]
if i%nk == 0 {
t = subw(rotw(t)) ^ u32(pow_x[i/nk-1]) << 24
} else if nk > 6 && i%nk == 4 {
t = subw(t)
}
enc[i] = enc[i-nk] ^ t
i++
}
// Derive decryption key from encryption key.
// Reverse the 4-word round key sets from enc to produce dec.
// All sets but the first and last get the MixColumn transform applied.
if dec.len == 0 {
return
}
n := enc.len
for i = 0; i < n; i += 4 {
ei := n - i - 4
for j := 0; j < 4; j++ {
mut x := enc[ei+j]
if i > 0 && i+4 < n {
x = td0[s_box0[x>>24]] ^ td1[s_box0[x>>16&0xff]] ^ td2[s_box0[x>>8&0xff]] ^ td3[s_box0[x&u32(0xff)]]
}
dec[i+j] = x
}
}
}