v/glm/glm.v

315 lines
6.1 KiB
V

module glm
import math
/*
#flag -lmyglm
# float* myglm_ortho(float, float, float, float);
# float* myglm_translate(float, float, float);
*/
// # float* myglm_rotate(float *m, float angle, float, float, float);
// # float* myglm_perspective(float, float, float, float);
// # float* myglm_look_at(glm__Vec3, glm__Vec3, glm__Vec3);
// # glm__Vec3 myglm_mult(glm__Vec3, glm__Vec3);
// # glm__Vec3 myglm_cross(glm__Vec3, glm__Vec3);
// # glm__Vec3 myglm_normalize(glm__Vec3);
struct Mat4 {
pub:
data *float
}
struct Vec2 {
x float
y float
}
struct Vec3 {
x float
y float
z float
}
fn vec3(x, y, z float) Vec3 {
res := Vec3 {
x: x,
y: y,
z: z,
}
return res
}
fn mat4(f *float) Mat4 {
res := Mat4 {
data: f
}
return res
}
fn (v Vec3) str() string {
return 'Vec3{ $v.x, $v.y, $v.z }'
}
fn (v Vec2) str() string {
return 'Vec3{ $v.x, $v.y }'
}
fn (m Mat4) str() string {
mut s := '[ '
for i := 0; i < 4; i++ {
if i != 0 {
s += ' '
}
for j := 0; j < 4; j++ {
val := m.data[i * 4 + j]
s += '${val:.2f} '
}
if i != 3 {
s += '\n'
}
}
s += ']'
return s
}
fn vec2(x, y int) Vec2 {
res := Vec2 {
x: x,
y: y,
}
return res
}
fn (a Vec3) add(b Vec3) Vec3 {
res := Vec3 {
x: a.x + b.x,
y: a.y + b.y,
z: a.z + b.z,
}
return res
}
fn (a Vec3) sub(b Vec3) Vec3 {
res := Vec3 {
x: a.x - b.x,
y: a.y - b.y,
z: a.z - b.z,
}
return res
}
// fn (a Vec3) mult(b Vec3) Vec3 {
// # return myglm_mult(a,b);
// }
fn (a Vec3) mult_scalar(b float) Vec3 {
res := Vec3 {
x: a.x * b,
y: a.y * b,
z: a.z * b,
}
return res
}
fn (a Vec3) print() {
x := a.x
y := a.y
z := a.z
# printf("vec3{%f,%f,%f}\n",x,y,z);
// println('vec3{$x,$y,$z}')
}
/*
fn rotate(m Mat4, angle float, vec Vec3) Mat4 {
// # t_mat4 m;
// println('rotate done')
# return glm__mat4( myglm_rotate(m.data, angle, vec.x,vec.y,vec.z) );
return Mat4{}
}
*/
// fn translate(vec Vec3) *float {
fn translate(m Mat4, v Vec3) Mat4 {
// # return glm__mat4(myglm_translate(vec.x,vec.y,vec.z) );
a := m.data
mut out := float_calloc(16)
x := v.x
y := v.y
z := v.z
a00 := a[0]a01 := a[1]a02 := a[2]a03 := a[3]
a10 := a[4]a11 := a[5]a12 := a[6]a13 := a[7]
a20 := a[8]a21 := a[9]a22 := a[10]a23 := a[11]
out[0] = a00 out[1] = a01 out[2] = a02 out[3] = a03
out[4] = a10 out[5] = a11 out[6] = a12 out[7] = a13
out[8] = a20 out[9] = a21 out[10] = a22 out[11] = a23
out[12] = a00 * x + a10 * y + a20 * z + a[12]
out[13] = a01 * x + a11 * y + a21 * z + a[13]
out[14] = a02 * x + a12 * y + a22 * z + a[14]
out[15] = a03 * x + a13 * y + a23 * z + a[15]
return mat4(out)
}
/*
fn normalize(vec Vec3) Vec3 {
# return myglm_normalize(vec);
return Vec3{}
}
*/
// https://github.com/g-truc/glm/blob/0ceb2b755fb155d593854aefe3e45d416ce153a4/glm/ext/matrix_clip_space.inl
fn ortho(left, right, bottom, top float) Mat4 {
println('glm ortho($left, $right, $bottom, $top)')
// mat<4, 4, T, defaultp> Result(static_cast<T>(1));
n := 16
mut res := float_calloc(n)
# res[0] = 2 / (right - left) ;
# res[5] = 2.0 / (top - bottom);
# res[10] = (1);
# res[12] = - (right + left) / (right - left);
# res[13] = - (top + bottom) / (top - bottom);
res[15] = 1
return mat4(res)
}
// fn scale(a *float, v Vec3) *float {
fn scale(m Mat4, v Vec3) Mat4 {
a := m.data
mut out := float_calloc(16)
x := v.x
y := v.y
z := v.z
out[0] = a[0] * v.x
out[1] = a[1] * x
out[2] = a[2] * x
out[3] = a[3] * x
out[4] = a[4] * y
out[5] = a[5] * y
out[6] = a[6] * y
out[7] = a[7] * y
out[8] = a[8] * z
out[9] = a[9] * z
out[10] = a[10] * z
out[11] = a[11] * z
out[12] = a[12]
out[13] = a[13]
out[14] = a[14]
out[15] = a[15]
return mat4(out)
}
// fn rotate_z(a *float, rad float) *float {
fn rotate_z(m Mat4, rad float) Mat4 {
a := m.data
mut out := float_calloc(16)
s := math.sin(rad)
c := math.cos(rad)
a00 := a[0]
a01 := a[1]
a02 := a[2]
a03 := a[3]
a10 := a[4]
a11 := a[5]
a12 := a[6]
a13 := a[7]
out[8] = a[8]
out[9] = a[9]
out[10] = a[10]
out[11] = a[11]
out[12] = a[12]
out[13] = a[13]
out[14] = a[14]
out[15] = a[15]
// Perform axis-specific matrix multiplication
out[0] = a00 * c + a10 * s
out[1] = a01 * c + a11 * s
out[2] = a02 * c + a12 * s
out[3] = a03 * c + a13 * s
out[4] = a10 * c - a00 * s
out[5] = a11 * c - a01 * s
out[6] = a12 * c - a02 * s
out[7] = a13 * c - a03 * s
return mat4(out)
}
fn identity() Mat4 {
// 1 0 0 0
// 0 1 0 0
// 0 0 1 0
// 0 0 0 1
n := 16
mut res := float_calloc(sizeof(float) * n)
res[0] = 1
res[5] = 1
res[10] = 1
res[15] = 1
return mat4(res)
}
// returns *float without allocation
fn identity2(res *float) {
res[0] = 1
res[5] = 1
res[10] = 1
res[15] = 1
// # float f[16]={0};// for (int i =0;i<16;i++)
// # printf("!!%d\n", f[0]);
// # glm__identity2(&f);
// # gl__Shader_set_mat4(shader, tos2("projection"), f) ;
}
fn identity3() []float {
res := [1.0, 0, 0, 0,
0, 1, 0, 0,
0, 0, 1, 0,
0, 0, 0, 1,
] !
return res
}
// https://github.com/toji/gl-matrix/blob/1549cf21dfa14a2bc845993485343d519cf064fe/src/gl-matrix/mat4.js
fn ortho_js(left, right, bottom, top float) *float {
mynear := 1
myfar := 1
lr := 1.0 / (left - right)
bt := 1.0 / (bottom - top)
nf := 1.0 / 1.0// (mynear -myfar)
# float* out = malloc (sizeof(float) * 16);
# out[0] = -2 * lr;
# out[1] = 0;
# out[2] = 0;
# out[3] = 0;
# out[4] = 0;
# out[5] = -2 * bt;
# out[6] = 0;
# out[7] = 0;
# out[8] = 0;
# out[9] = 0;
# out[10] = 2 * nf;
# out[11] = 0;
# out[12] = (left + right) * lr;
# out[13] = (top + bottom) * bt;
# out[14] = 1 * nf;//(far + near) * nf;
# out[15] = 1;
# return out;
f := 0.0
return &f
}
// fn ortho_old(a, b, c, d float) *float {
// # return myglm_ortho(a,b,c,d);
// }
fn cross(a, b Vec3) Vec3 {
// # return myglm_cross(a,b);
return Vec3{}
}
/*
fn perspective(degrees float, ratio float, a, b float) Mat4 {
// println('lang per degrees=$degrees ratio=$ratio a=$a b=$b')
// # printf("lang pers degrees=%f ratio=%f a=%f b=%f\n", degrees, ratio, a,b);
# return glm__mat4( myglm_perspective(degrees, ratio, a,b) ) ;
return Mat4{}
}
fn look_at(eye, center, up Vec3) Mat4 {
# return glm__mat4( myglm_look_at(eye, center, up) ) ;
return Mat4{}
}
*/