286 lines
		
	
	
		
			5.6 KiB
		
	
	
	
		
			V
		
	
	
			
		
		
	
	
			286 lines
		
	
	
		
			5.6 KiB
		
	
	
	
		
			V
		
	
	
// Copyright (c) 2019 Alexander Medvednikov. All rights reserved.
 | 
						|
// Use of this source code is governed by an MIT license
 | 
						|
// that can be found in the LICENSE file.
 | 
						|
 | 
						|
module math
 | 
						|
 | 
						|
#include <math.h>
 | 
						|
 | 
						|
// NOTE
 | 
						|
// When adding a new function, please make sure it's in the right place.
 | 
						|
// All functions are sorted alphabetically.
 | 
						|
 | 
						|
// Returns the absolute value.
 | 
						|
pub fn abs(a f64) f64 {
 | 
						|
	if a < 0 {
 | 
						|
		return -a
 | 
						|
	}
 | 
						|
	return a
 | 
						|
}
 | 
						|
 | 
						|
fn C.acos(a f64) f64
 | 
						|
 | 
						|
// acos calculates inverse cosine (arccosine).
 | 
						|
pub fn acos(a f64) f64 {
 | 
						|
	return C.acos(a)
 | 
						|
}
 | 
						|
 | 
						|
// asin calculates inverse sine (arcsine).
 | 
						|
pub fn asin(a f64) f64 {
 | 
						|
	return C.asin(a)
 | 
						|
}
 | 
						|
 | 
						|
// atan calculates inverse tangent (arctangent).
 | 
						|
pub fn atan(a f64) f64 {
 | 
						|
	return C.atan(a)
 | 
						|
}
 | 
						|
 | 
						|
// atan2 calculates inverse tangent with two arguments, returns the angle between the X axis and the point.
 | 
						|
pub fn atan2(a, b f64) f64 {
 | 
						|
	return C.atan2(a, b)
 | 
						|
}
 | 
						|
 | 
						|
// cbrt calculates cubic root.
 | 
						|
pub fn cbrt(a f64) f64 {
 | 
						|
	return C.cbrt(a)
 | 
						|
}
 | 
						|
 | 
						|
// ceil returns the nearest integer greater or equal to the provided value.
 | 
						|
pub fn ceil(a f64) int {
 | 
						|
	return C.ceil(a)
 | 
						|
}
 | 
						|
 | 
						|
// cos calculates cosine.
 | 
						|
pub fn cos(a f64) f64 {
 | 
						|
	return C.cos(a)
 | 
						|
}
 | 
						|
 | 
						|
// cosh calculates hyperbolic cosine.
 | 
						|
pub fn cosh(a f64) f64 {
 | 
						|
	return C.cosh(a)
 | 
						|
}
 | 
						|
 | 
						|
// degrees convert from degrees to radians.
 | 
						|
pub fn degrees(radians f64) f64 {
 | 
						|
	return radians * (180.0 / pi)
 | 
						|
}
 | 
						|
 | 
						|
// exp calculates exponent of the number (math.pow(math.E, a)).
 | 
						|
pub fn exp(a f64) f64 {
 | 
						|
	return C.exp(a)
 | 
						|
}
 | 
						|
 | 
						|
// digits returns an array of the digits of n in the given base.
 | 
						|
pub fn digits(_n, base int) []int {
 | 
						|
	mut n := _n
 | 
						|
	mut sign := 1
 | 
						|
	if n < 0 {
 | 
						|
		sign = -1
 | 
						|
		n = -n
 | 
						|
	}
 | 
						|
	mut res := []int
 | 
						|
	for n != 0 {
 | 
						|
		res << (n % base) * sign
 | 
						|
		n /= base
 | 
						|
	}
 | 
						|
	return res
 | 
						|
}
 | 
						|
 | 
						|
// erf computes the error function value
 | 
						|
pub fn erf(a f64) f64 {
 | 
						|
	return C.erf(a)
 | 
						|
}
 | 
						|
 | 
						|
// erfc computes the complementary error function value
 | 
						|
pub fn erfc(a f64) f64 {
 | 
						|
	return C.erfc(a)
 | 
						|
}
 | 
						|
 | 
						|
// exp2 returns the base-2 exponential function of a (math.pow(2, a)).
 | 
						|
pub fn exp2(a f64) f64 {
 | 
						|
	return C.exp2(a)
 | 
						|
}
 | 
						|
 | 
						|
// factorial calculates the factorial of the provided value.
 | 
						|
// TODO bring back once multiple value functions are implemented
 | 
						|
/*
 | 
						|
fn recursive_product( n int, current_number_ptr &int) int{
 | 
						|
    mut m := n / 2
 | 
						|
    if (m == 0){
 | 
						|
        return *current_number_ptr += 2
 | 
						|
    }
 | 
						|
    if (n == 2){
 | 
						|
        return (*current_number_ptr += 2) * (*current_number_ptr += 2)
 | 
						|
    }
 | 
						|
    return recursive_product((n - m), *current_number_ptr) * recursive_product(m, *current_number_ptr)
 | 
						|
}
 | 
						|
 | 
						|
pub fn factorial(n int) i64 {
 | 
						|
    if n < 0 {
 | 
						|
        panic('factorial: Cannot find factorial of negative number')
 | 
						|
    }
 | 
						|
    if n < 2 {
 | 
						|
        return i64(1)
 | 
						|
    }
 | 
						|
    mut r := 1
 | 
						|
    mut p := 1
 | 
						|
    mut current_number := 1
 | 
						|
    mut h := 0
 | 
						|
    mut shift := 0
 | 
						|
    mut high := 1
 | 
						|
    mut len := high
 | 
						|
    mut log2n := int(floor(log2(n)))
 | 
						|
    for ;h != n; {
 | 
						|
        shift += h
 | 
						|
        h = n >> log2n
 | 
						|
        log2n -= 1
 | 
						|
        len = high
 | 
						|
        high = (h - 1) | 1
 | 
						|
        len = (high - len)/2
 | 
						|
        if (len > 0){
 | 
						|
            p *= recursive_product(len, ¤t_number)
 | 
						|
            r *= p
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return i64((r << shift))
 | 
						|
}
 | 
						|
*/
 | 
						|
 | 
						|
// floor returns the nearest integer lower or equal of the provided value.
 | 
						|
pub fn floor(a f64) f64 {
 | 
						|
	return C.floor(a)
 | 
						|
}
 | 
						|
 | 
						|
// fmod returns the floating-point remainder of number / denom (rounded towards zero):
 | 
						|
pub fn fmod(a, b f64) f64 {
 | 
						|
	return C.fmod(a, b)
 | 
						|
}
 | 
						|
 | 
						|
// gamma computes the gamma function value
 | 
						|
pub fn gamma(a f64) f64 {
 | 
						|
	return C.tgamma(a)
 | 
						|
}
 | 
						|
 | 
						|
// gcd calculates greatest common (positive) divisor (or zero if a and b are both zero).
 | 
						|
pub fn gcd(a_, b_ i64) i64 {
 | 
						|
	mut a := a_
 | 
						|
	mut b := b_
 | 
						|
	if a < 0 {
 | 
						|
		a = -a
 | 
						|
	}
 | 
						|
	if b < 0 {
 | 
						|
		b = -b
 | 
						|
	}
 | 
						|
	for b != 0 {
 | 
						|
		a %= b
 | 
						|
		if a == 0 {
 | 
						|
			return b
 | 
						|
		}
 | 
						|
		b %= a
 | 
						|
	}
 | 
						|
	return a
 | 
						|
}
 | 
						|
 | 
						|
// Returns hypotenuse of a right triangle.
 | 
						|
pub fn hypot(a, b f64) f64 {
 | 
						|
	return C.hypot(a, b)
 | 
						|
}
 | 
						|
 | 
						|
// lcm calculates least common (non-negative) multiple.
 | 
						|
pub fn lcm(a, b i64) i64 {
 | 
						|
	if a == 0 {
 | 
						|
		return a
 | 
						|
	}
 | 
						|
	res := a * (b / gcd(b, a))
 | 
						|
	if res < 0 {
 | 
						|
		return -res
 | 
						|
	}
 | 
						|
	return res
 | 
						|
}
 | 
						|
 | 
						|
// log calculates natural (base-e) logarithm of the provided value.
 | 
						|
pub fn log(a f64) f64 {
 | 
						|
	return C.log(a)
 | 
						|
}
 | 
						|
 | 
						|
// log2 calculates base-2 logarithm of the provided value.
 | 
						|
pub fn log2(a f64) f64 {
 | 
						|
	return C.log2(a)
 | 
						|
}
 | 
						|
 | 
						|
// log10 calculates the common (base-10) logarithm of the provided value.
 | 
						|
pub fn log10(a f64) f64 {
 | 
						|
	return C.log10(a)
 | 
						|
}
 | 
						|
 | 
						|
// log_gamma computes the log-gamma function value
 | 
						|
pub fn log_gamma(a f64) f64 {
 | 
						|
	return C.lgamma(a)
 | 
						|
}
 | 
						|
 | 
						|
// log_n calculates base-N logarithm of the provided value.
 | 
						|
pub fn log_n(a, b f64) f64 {
 | 
						|
	return C.log(a) / C.log(b)
 | 
						|
}
 | 
						|
 | 
						|
// max returns the maximum value of the two provided.
 | 
						|
pub fn max(a, b f64) f64 {
 | 
						|
	if a > b {
 | 
						|
		return a
 | 
						|
	}
 | 
						|
	return b
 | 
						|
}
 | 
						|
 | 
						|
// min returns the minimum value of the two provided.
 | 
						|
pub fn min(a, b f64) f64 {
 | 
						|
	if a < b {
 | 
						|
		return a
 | 
						|
	}
 | 
						|
	return b
 | 
						|
}
 | 
						|
 | 
						|
// pow returns base raised to the provided power.
 | 
						|
pub fn pow(a, b f64) f64 {
 | 
						|
	return C.pow(a, b)
 | 
						|
}
 | 
						|
 | 
						|
// radians convert from radians to degrees.
 | 
						|
pub fn radians(degrees f64) f64 {
 | 
						|
	return degrees * (pi / 180.0)
 | 
						|
}
 | 
						|
 | 
						|
// round returns the integer nearest to the provided value.
 | 
						|
pub fn round(f f64) f64 {
 | 
						|
	return C.round(f)
 | 
						|
}
 | 
						|
 | 
						|
// sin calculates sine.
 | 
						|
pub fn sin(a f64) f64 {
 | 
						|
	return C.sin(a)
 | 
						|
}
 | 
						|
 | 
						|
// sinh calculates hyperbolic sine.
 | 
						|
pub fn sinh(a f64) f64 {
 | 
						|
	return C.sinh(a)
 | 
						|
}
 | 
						|
 | 
						|
// sqrt calculates square-root of the provided value.
 | 
						|
pub fn sqrt(a f64) f64 {
 | 
						|
	return C.sqrt(a)
 | 
						|
}
 | 
						|
// tan calculates tangent.
 | 
						|
pub fn tan(a f64) f64 {
 | 
						|
	return C.tan(a)
 | 
						|
}
 | 
						|
 | 
						|
// tanh calculates hyperbolic tangent.
 | 
						|
pub fn tanh(a f64) f64 {
 | 
						|
	return C.tanh(a)
 | 
						|
}
 | 
						|
 | 
						|
// trunc rounds a toward zero, returning the nearest integral value that is not
 | 
						|
// larger in magnitude than a.
 | 
						|
pub fn trunc(a f64) f64 {
 | 
						|
	return C.trunc(a)
 | 
						|
}
 |