v/vlib/crypto/md5/md5.v

147 lines
3.3 KiB
V

// Copyright (c) 2019 Alexander Medvednikov. All rights reserved.
// Use of this source code is governed by an MIT license
// that can be found in the LICENSE file.
// Package md5 implements the MD5 hash algorithm as defined in RFC 1321.
// MD5 is cryptographically broken and should not be used for secure
// applications.
// Based off: https://github.com/golang/go/blob/master/src/crypto/md5
// Last commit: https://github.com/golang/go/commit/ed7f323c8f4f6bc61a75146bf34f5b8f73063a17
module md5
import encoding.binary
const (
// The size of an MD5 checksum in bytes.
size = 16
// The blocksize of MD5 in bytes.
block_size = 64
)
const (
init0 = 0x67452301
init1 = 0xEFCDAB89
init2 = 0x98BADCFE
init3 = 0x10325476
)
// Digest represents the partial evaluation of a checksum.
struct Digest {
mut:
s []u32
x []byte
nx int
len u64
}
fn (d mut Digest) reset() {
d.s = [u32(0)].repeat(4)
d.x = [byte(0)].repeat(block_size)
d.s[0] = u32(init0)
d.s[1] = u32(init1)
d.s[2] = u32(init2)
d.s[3] = u32(init3)
d.nx = 0
d.len = 0
}
// new returns a new Digest (implementing hash.Hash) computing the MD5 checksum.
pub fn new() &Digest {
mut d := &Digest{}
d.reset()
return d
}
pub fn (d mut Digest) write(p_ []byte) int {
mut p := p_
nn := p.len
d.len += u64(nn)
if d.nx > 0 {
n := copy(d.x[d.nx..], p)
d.nx += n
if d.nx == block_size {
block(mut d, d.x)
d.nx = 0
}
if n >= p.len {
p = []
} else {
p = p[n..]
}
}
if p.len >= block_size {
n := p.len &~ (block_size - 1)
block(mut d, p[..n])
if n >= p.len {
p = []
} else {
p = p[n..]
}
}
if p.len > 0 {
d.nx = copy(d.x, p)
}
return nn
}
pub fn (d &Digest) sum(b_in []byte) []byte {
// Make a copy of d so that caller can keep writing and summing.
mut d0 := *d
hash := d0.checksum()
mut b_out := b_in.clone()
for b in hash {
b_out << b
}
return b_out
}
pub fn (d mut Digest) checksum() []byte {
// Append 0x80 to the end of the message and then append zeros
// until the length is a multiple of 56 bytes. Finally append
// 8 bytes representing the message length in bits.
//
// 1 byte end marker :: 0-63 padding bytes :: 8 byte length
// tmp := [1 + 63 + 8]byte{0x80}
mut tmp := [byte(0)].repeat(1 + 63 + 8)
tmp[0] = 0x80
pad := int((55 - int(d.len)) % u64(64)) // calculate number of padding bytes
binary.little_endian_put_u64(mut tmp[1+pad..], d.len<<u64(3)) // append length in bits
d.write(tmp[..1+pad+8])
// The previous write ensures that a whole number of
// blocks (i.e. a multiple of 64 bytes) have been hashed.
if d.nx != 0 {
panic('d.nx != 0')
}
digest := [byte(0)].repeat(size)
binary.little_endian_put_u32(mut digest, d.s[0])
binary.little_endian_put_u32(mut digest[4..], d.s[1])
binary.little_endian_put_u32(mut digest[8..], d.s[2])
binary.little_endian_put_u32(mut digest[12..], d.s[3])
return digest
}
// sum returns the MD5 checksum of the data.
pub fn sum(data []byte) []byte {
mut d := new()
d.write(data)
return d.checksum()
}
fn block(dig mut Digest, p []byte) {
// For now just use block_generic until we have specific
// architecture optimized versions
block_generic(mut dig, p)
}
pub fn (d &Digest) size() int { return size }
pub fn (d &Digest) block_size() int { return block_size }
pub fn hexhash(s string) string { return sum(s.bytes()).hex() }