205 lines
5.2 KiB
V
205 lines
5.2 KiB
V
module edwards25519
|
|
|
|
import os
|
|
import rand
|
|
import encoding.hex
|
|
|
|
const github_job = os.getenv('GITHUB_JOB')
|
|
|
|
fn testsuite_begin() {
|
|
if edwards25519.github_job != '' {
|
|
// ensure that the CI does not run flaky tests:
|
|
rand.seed([u32(0xffff24), 0xabcd])
|
|
}
|
|
}
|
|
|
|
// test_bytes_montgomery tests the set_bytes_with_clamping+bytes_montgomery path
|
|
// equivalence to curve25519.X25519 for basepoint scalar multiplications.
|
|
//
|
|
// Note that you can't actually implement X25519 with this package because
|
|
// there is no SetBytesMontgomery, and it would not be possible to implement
|
|
// it properly: points on the twist would get rejected, and the Scalar returned
|
|
// by set_bytes_with_clamping does not preserve its cofactor-clearing properties.
|
|
//
|
|
// Disabled curve25519 not available yet, but maybe can use own curve25519
|
|
/*
|
|
fn fn_mon(scalar [32]byte) bool {
|
|
mut s := new_scalar().set_bytes_with_clamping(scalar[..])
|
|
p := (&Point{}).scalar_base_mult(s)
|
|
got := p.bytes_montgomery()
|
|
want, _ := curve25519.X25519(scalar[..], curve25519.Basepoint)
|
|
return bytes.equal(got, want)
|
|
}
|
|
|
|
fn test_bytes_montgomery() {
|
|
/* f := fn(scalar [32]byte) bool {
|
|
s := new_scalar().set_bytes_with_clamping(scalar[..])
|
|
p := (&Point{}).scalar_base_mult(s)
|
|
got := p.bytes_montgomery()
|
|
want, _ := curve25519.X25519(scalar[..], curve25519.Basepoint)
|
|
return bytes.equal(got, want)
|
|
} */
|
|
if err := quick.Check(f, nil); err != nil {
|
|
t.Error(err)
|
|
}
|
|
}*/
|
|
|
|
fn test_bytes_montgomery_sodium() ? {
|
|
// Generated with libsodium.js 1.0.18
|
|
// crypto_sign_keypair().pubkey
|
|
pubkey := '3bf918ffc2c955dc895bf145f566fb96623c1cadbe040091175764b5fde322c0'
|
|
mut p := Point{}
|
|
p.set_bytes(hex.decode(pubkey) ?) ?
|
|
|
|
// crypto_sign_ed25519_pk_to_curve25519(pubkey)
|
|
want := 'efc6c9d0738e9ea18d738ad4a2653631558931b0f1fde4dd58c436d19686dc28'
|
|
got := hex.encode(p.bytes_montgomery())
|
|
assert got == want
|
|
}
|
|
|
|
fn test_bytes_montgomery_infinity() {
|
|
mut p := new_identity_point()
|
|
want := '0000000000000000000000000000000000000000000000000000000000000000'
|
|
got := hex.encode(p.bytes_montgomery())
|
|
|
|
assert got == want
|
|
}
|
|
|
|
const (
|
|
loworder_string = '26e8958fc2b227b045c3f489f2ef98f0d5dfac05d3c63339b13802886d53fc85'
|
|
loworder_bytes = hex.decode(loworder_string) or { panic(err) }
|
|
)
|
|
|
|
fn fn_cofactor(mut data []u8) bool {
|
|
if data.len != 64 {
|
|
panic('data.len should be 64')
|
|
}
|
|
mut loworder := Point{}
|
|
loworder.set_bytes(edwards25519.loworder_bytes) or { panic(err) }
|
|
|
|
mut s := new_scalar()
|
|
mut p := Point{}
|
|
mut p8 := Point{}
|
|
s.set_uniform_bytes(data) or { panic(err) }
|
|
p.scalar_base_mult(mut s)
|
|
p8.mult_by_cofactor(p)
|
|
|
|
assert check_on_curve(p8) == true
|
|
|
|
// 8 * p == (8 * s) * B
|
|
mut sc := Scalar{
|
|
s: [32]byte{}
|
|
}
|
|
sc.s[0] = u8(0x08)
|
|
s.multiply(s, sc)
|
|
mut pp := Point{}
|
|
pp.scalar_base_mult(mut s)
|
|
if p8.equal(pp) != 1 {
|
|
return false
|
|
}
|
|
|
|
// 8 * p == 8 * (loworder + p)
|
|
pp.add(p, loworder)
|
|
pp.mult_by_cofactor(pp)
|
|
if p8.equal(pp) != 1 {
|
|
return false
|
|
}
|
|
|
|
// 8 * p == p + p + p + p + p + p + p + p
|
|
pp.set(new_identity_point())
|
|
for i := 0; i < 8; i++ {
|
|
pp.add(pp, p)
|
|
}
|
|
return p8.equal(pp) == 1
|
|
}
|
|
|
|
fn test_mult_by_cofactor() ? {
|
|
mut loworder := Point{}
|
|
mut data := rand.bytes(64) ?
|
|
|
|
assert fn_cofactor(mut data) == true
|
|
}
|
|
|
|
fn invert_works(mut xinv Scalar, x NotZeroScalar) bool {
|
|
xinv.invert(x)
|
|
mut check := Scalar{}
|
|
check.multiply(x, xinv)
|
|
return check == sc_one && is_reduced(xinv)
|
|
}
|
|
|
|
fn test_scalar_invert() {
|
|
nsc := generate_notzero_scalar(5) or { panic(err) }
|
|
mut xsc := generate_scalar(5) or { panic(err) }
|
|
assert invert_works(mut xsc, nsc) == true
|
|
|
|
mut zero := new_scalar()
|
|
mut xx := new_scalar()
|
|
xx.invert(zero)
|
|
assert xx.equal(zero) == 1
|
|
}
|
|
|
|
fn test_multiscalarmultmatchesbasemult() {
|
|
for i in 0 .. 6 {
|
|
x := generate_scalar(100) or { panic(err) }
|
|
y := generate_scalar(5) or { panic(err) }
|
|
z := generate_scalar(2) or { panic(err) }
|
|
assert multiscalarmultmatchesbasemult(x, y, z) == true
|
|
}
|
|
}
|
|
|
|
fn multiscalarmultmatchesbasemult(xx Scalar, yy Scalar, zz Scalar) bool {
|
|
mut x := xx
|
|
mut y := yy
|
|
mut z := zz
|
|
|
|
mut p := Point{}
|
|
mut q1 := Point{}
|
|
mut q2 := Point{}
|
|
mut q3 := Point{}
|
|
mut check := Point{}
|
|
mut b := new_generator_point()
|
|
|
|
p.multi_scalar_mult([x, y, z], [b, b, b])
|
|
|
|
q1.scalar_base_mult(mut x)
|
|
q2.scalar_base_mult(mut y)
|
|
q3.scalar_base_mult(mut z)
|
|
check.add(q1, q2)
|
|
check.add(check, q3)
|
|
|
|
check_on_curve(p, check, q1, q2, q3)
|
|
return p.equal(check) == 1
|
|
}
|
|
|
|
fn vartime_multiscala_rmultmatches_basemult(xx Scalar, yy Scalar, zz Scalar) bool {
|
|
mut x := xx
|
|
mut y := yy
|
|
mut z := zz
|
|
mut p := Point{}
|
|
mut q1 := Point{}
|
|
mut q2 := Point{}
|
|
mut q3 := Point{}
|
|
mut check := Point{}
|
|
mut b := new_generator_point()
|
|
|
|
p.vartime_multiscalar_mult([x, y, z], [b, b, b])
|
|
|
|
q1.scalar_base_mult(mut x)
|
|
q2.scalar_base_mult(mut y)
|
|
q3.scalar_base_mult(mut z)
|
|
check.add(q1, q2)
|
|
check.add(check, q3)
|
|
|
|
check_on_curve(p, check, q1, q2, q3)
|
|
return p.equal(check) == 1
|
|
}
|
|
|
|
fn test_vartimemultiscalarmultmatchesbasemult() {
|
|
for i in 0 .. 5 {
|
|
x := generate_scalar(100) or { panic(err) }
|
|
y := generate_scalar(5) or { panic(err) }
|
|
z := generate_scalar(2) or { panic(err) }
|
|
assert vartime_multiscala_rmultmatches_basemult(x, y, z) == true
|
|
}
|
|
}
|