400 lines
		
	
	
		
			8.8 KiB
		
	
	
	
		
			V
		
	
	
			
		
		
	
	
			400 lines
		
	
	
		
			8.8 KiB
		
	
	
	
		
			V
		
	
	
| // Copyright (c) 2019-2020 Alexander Medvednikov. All rights reserved.
 | |
| // Use of this source code is governed by an MIT license
 | |
| // that can be found in the LICENSE file.
 | |
| module time
 | |
| 
 | |
| #include <time.h>
 | |
| 
 | |
| const (
 | |
| 	days_string = 'MonTueWedThuFriSatSun'
 | |
| 	month_days = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31]
 | |
| 	months_string = 'JanFebMarAprMayJunJulAugSepOctNovDec'
 | |
| 	// The unsigned zero year for internal calculations.
 | |
| 	// Must be 1 mod 400, and times before it will not compute correctly,
 | |
| 	// but otherwise can be changed at will.
 | |
| 	absolute_zero_year = i64(-292277022399 )//as i64
 | |
| 	seconds_per_minute = 60
 | |
| 	seconds_per_hour = 60 * seconds_per_minute
 | |
| 	seconds_per_day = 24 * seconds_per_hour
 | |
| 	seconds_per_week = 7 * seconds_per_day
 | |
| 	days_per_400_years = 365 * 400 + 97
 | |
| 	days_per_100_years = 365 * 100 + 24
 | |
| 	days_per_4_years = 365 * 4 + 1
 | |
| 	days_before = [
 | |
| 		0,
 | |
| 		31,
 | |
| 		31 + 28,
 | |
| 		31 + 28 + 31,
 | |
| 		31 + 28 + 31 + 30,
 | |
| 		31 + 28 + 31 + 30 + 31,
 | |
| 		31 + 28 + 31 + 30 + 31 + 30,
 | |
| 		31 + 28 + 31 + 30 + 31 + 30 + 31,
 | |
| 		31 + 28 + 31 + 30 + 31 + 30 + 31 + 31,
 | |
| 		31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30,
 | |
| 		31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31,
 | |
| 		31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31 + 30,
 | |
| 		31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31 + 30 + 31,
 | |
| 	]
 | |
| )
 | |
| 
 | |
| pub struct Time {
 | |
| pub:
 | |
| 	year   			int
 | |
| 	month  			int
 | |
| 	day    			int
 | |
| 	hour   			int
 | |
| 	minute 			int
 | |
| 	second 			int
 | |
| 	microsecond 	int
 | |
| 	unix   			u64
 | |
| }
 | |
| 
 | |
| pub enum FormatTime {
 | |
| 	hhmm12
 | |
| 	hhmm24
 | |
| 	hhmmss12
 | |
| 	hhmmss24
 | |
| 	no_time
 | |
| }
 | |
| 
 | |
| pub enum FormatDate {
 | |
| 	ddmmyy
 | |
| 	ddmmyyyy
 | |
| 	mmddyy
 | |
| 	mmddyyyy
 | |
| 	mmmd
 | |
| 	mmmdd
 | |
| 	mmmddyyyy
 | |
| 	no_date
 | |
| 	yyyymmdd
 | |
| }
 | |
| 
 | |
| pub enum FormatDelimiter {
 | |
| 	dot
 | |
| 	hyphen
 | |
| 	slash
 | |
| 	space
 | |
| 	no_delimiter
 | |
| }
 | |
| 
 | |
| pub struct C.timeval {
 | |
| 	tv_sec  u64
 | |
| 	tv_usec u64
 | |
| }
 | |
| 
 | |
| fn C.localtime(t &C.time_t) &C.tm
 | |
| fn C.time(t &C.time_t) C.time_t
 | |
| 
 | |
| 
 | |
| // now returns current local time.
 | |
| pub fn now() Time {
 | |
| 	$if macos {
 | |
| 		return darwin_now()
 | |
| 	}
 | |
| 	$if windows {
 | |
| 		return win_now()
 | |
| 	}
 | |
| 	$if solaris {
 | |
| 		return solaris_now()
 | |
| 	}
 | |
| 	$if linux {
 | |
| 		return linux_now()
 | |
| 	}
 | |
| 	// defaults to most common feature, the microsecond precision is not available
 | |
| 	// in this API call
 | |
| 	t := C.time(0)
 | |
| 	now := C.localtime(&t)
 | |
| 	return convert_ctime(now, 0)
 | |
| }
 | |
| 
 | |
| // utc returns the current time in utc
 | |
| pub fn utc() Time {
 | |
| 	$if macos {
 | |
| 		return darwin_utc()
 | |
| 	}
 | |
| 	$if windows {
 | |
| 		return win_utc()
 | |
| 	}
 | |
| 	$if solaris {
 | |
| 		return solaris_utc()
 | |
| 	}
 | |
| 	$if linux {
 | |
| 		return linux_utc()
 | |
| 	}
 | |
| 	// defaults to most common feature, the microsecond precision is not available
 | |
| 	// in this API call
 | |
| 	t := C.time(0)
 | |
| 	_ = C.time(&t)
 | |
| 	return unix2(int(t), 0)
 | |
| }
 | |
| 
 | |
| // smonth returns month name.
 | |
| pub fn (t Time) smonth() string {
 | |
| 	i := t.month - 1
 | |
| 	return months_string[i * 3..(i + 1) * 3]
 | |
| }
 | |
| 
 | |
| // new_time returns a time struct with calculated Unix time.
 | |
| pub fn new_time(t Time) Time {
 | |
| 	return Time{
 | |
| 		year: t.year
 | |
| 		month: t.month
 | |
| 		day: t.day
 | |
| 		hour: t.hour
 | |
| 		minute: t.minute
 | |
| 		second: t.second
 | |
| 		unix: u64(t.unix_time())
 | |
| 		microsecond: t.microsecond
 | |
| 	}
 | |
| 	// TODO Use the syntax below when it works with reserved keywords like `unix`
 | |
| 	// return {
 | |
| 	// 	t |
 | |
| 	// 	unix:t.unix_time()
 | |
| 	// }
 | |
| }
 | |
| 
 | |
| // unix_time returns Unix time.
 | |
| pub fn (t Time) unix_time() int {
 | |
| 	if t.unix != 0 {
 | |
| 		return int(t.unix)
 | |
| 	}
 | |
| 	tt := C.tm{
 | |
| 		tm_sec: t.second
 | |
| 		tm_min: t.minute
 | |
| 		tm_hour: t.hour
 | |
| 		tm_mday: t.day
 | |
| 		tm_mon: t.month - 1
 | |
| 		tm_year: t.year - 1900
 | |
| 	}
 | |
| 	return make_unix_time(tt)
 | |
| }
 | |
| 
 | |
| // add_seconds returns a new time struct with an added number of seconds.
 | |
| pub fn (t Time) add_seconds(seconds int) Time {
 | |
| 	// TODO Add(d time.Duration)
 | |
| 	return unix(int(t.unix + u64(seconds)))
 | |
| }
 | |
| 
 | |
| // add_days returns a new time struct with an added number of days.
 | |
| pub fn (t Time) add_days(days int) Time {
 | |
| 	return unix(int(t.unix + u64(i64(days) * 3600 * 24)))
 | |
| }
 | |
| 
 | |
| // since returns a number of seconds elapsed since a given time.
 | |
| fn since(t Time) int {
 | |
| 	// TODO Use time.Duration instead of seconds
 | |
| 	return 0
 | |
| }
 | |
| 
 | |
| // relative returns a string representation of difference between time
 | |
| // and current time.
 | |
| pub fn (t Time) relative() string {
 | |
| 	now := time.now()
 | |
| 	secs := now.unix - t.unix
 | |
| 	if secs <= 30 {
 | |
| 		// right now or in the future
 | |
| 		// TODO handle time in the future
 | |
| 		return 'now'
 | |
| 	}
 | |
| 	if secs < 60 {
 | |
| 		return '1m'
 | |
| 	}
 | |
| 	if secs < 3600 {
 | |
| 		m := secs/60
 | |
| 		if m == 1 {
 | |
| 			return '1 minute ago'
 | |
| 		}
 | |
| 		return '$m minutes ago'
 | |
| 	}
 | |
| 	if secs < 3600 * 24 {
 | |
| 		h := secs/3600
 | |
| 		if h == 1 {
 | |
| 			return '1 hour ago'
 | |
| 		}
 | |
| 		return '$h hours ago'
 | |
| 	}
 | |
| 	if secs < 3600 * 24 * 5 {
 | |
| 		d:=secs/3600/24
 | |
| 		if d == 1 {
 | |
| 			return '1 day ago'
 | |
| 		}
 | |
| 		return '$d days ago'
 | |
| 	}
 | |
| 	if secs > 3600 * 24 * 10000 {
 | |
| 		return ''
 | |
| 	}
 | |
| 	return t.md()
 | |
| }
 | |
| 
 | |
| pub fn (t Time) relative_short() string {
 | |
| 	now := time.now()
 | |
| 	secs := now.unix - t.unix
 | |
| 	if secs <= 30 {
 | |
| 		// right now or in the future
 | |
| 		// TODO handle time in the future
 | |
| 		return 'now'
 | |
| 	}
 | |
| 	if secs < 60 {
 | |
| 		return '1m'
 | |
| 	}
 | |
| 	if secs < 3600 {
 | |
| 		return '${secs/60}m'
 | |
| 	}
 | |
| 	if secs < 3600 * 24 {
 | |
| 		return '${secs/3600}h'
 | |
| 	}
 | |
| 	if secs < 3600 * 24 * 5 {
 | |
| 		return '${secs/3600/24}d'
 | |
| 	}
 | |
| 	if secs > 3600 * 24 * 10000 {
 | |
| 		return ''
 | |
| 	}
 | |
| 	return t.md()
 | |
| }
 | |
| 
 | |
| // day_of_week returns the current day of a given year, month, and day,
 | |
| // as an integer.
 | |
| pub fn day_of_week(y, m, d int) int {
 | |
| 	// Sakomotho's algorithm is explained here:
 | |
| 	// https://stackoverflow.com/a/6385934
 | |
| 	t := [0, 3, 2, 5, 0, 3, 5, 1, 4, 6, 2, 4]
 | |
| 	mut sy := y
 | |
| 	if m < 3 {
 | |
| 		sy = sy - 1
 | |
| 	}
 | |
| 	return (sy + sy / 4 - sy / 100 + sy / 400 + t[m - 1] + d - 1) % 7 + 1
 | |
| }
 | |
| 
 | |
| // day_of_week returns the current day as an integer.
 | |
| pub fn (t Time) day_of_week() int {
 | |
| 	return day_of_week(t.year, t.month, t.day)
 | |
| }
 | |
| 
 | |
| // weekday_str returns the current day as a string.
 | |
| pub fn (t Time) weekday_str() string {
 | |
| 	i := t.day_of_week() - 1
 | |
| 	return days_string[i * 3..(i + 1) * 3]
 | |
| }
 | |
| 
 | |
| // ticks returns a number of milliseconds elapsed since system start.
 | |
| pub fn ticks() i64 {
 | |
| 	$if windows {
 | |
| 		return C.GetTickCount()
 | |
| 	} $else {
 | |
| 		ts := C.timeval{}
 | |
| 		C.gettimeofday(&ts, 0)
 | |
| 		return i64(ts.tv_sec * u64(1000) + (ts.tv_usec / u64(1000)))
 | |
| 	}
 | |
| 	// t := i64(C.mach_absolute_time())
 | |
| 	// # Nanoseconds elapsedNano = AbsoluteToNanoseconds( *(AbsoluteTime *) &t );
 | |
| 	// # return (double)(* (uint64_t *) &elapsedNano) / 1000000;
 | |
| }
 | |
| 
 | |
| // sleep makes the calling thread sleep for a given number of seconds.
 | |
| pub fn sleep(seconds int) {
 | |
| 	$if windows {
 | |
| 		C.Sleep(seconds * 1000)
 | |
| 	} $else {
 | |
| 		C.sleep(seconds)
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // sleep_ms makes the calling thread sleep for a given number of milliseconds.
 | |
| pub fn sleep_ms(milliseconds int) {
 | |
| 	$if windows {
 | |
| 		C.Sleep(milliseconds)
 | |
| 	} $else {
 | |
| 		C.usleep(milliseconds * 1000)
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // usleep makes the calling thread sleep for a given number of microseconds.
 | |
| pub fn usleep(microseconds int) {
 | |
| 	$if windows {
 | |
| 		milliseconds := microseconds / 1000
 | |
| 		C.Sleep(milliseconds)
 | |
| 	} $else {
 | |
| 		C.usleep(microseconds)
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // is_leap_year checks if a given a year is a leap year.
 | |
| pub fn is_leap_year(year int) bool {
 | |
| 	return (year % 4 == 0) && (year % 100 != 0 || year % 400 == 0)
 | |
| }
 | |
| 
 | |
| // days_in_month returns a number of days in a given month.
 | |
| pub fn days_in_month(month, year int) ?int {
 | |
| 	if month > 12 || month < 1 {
 | |
| 		return error('Invalid month: $month')
 | |
| 	}
 | |
| 	extra := if month == 2 && is_leap_year(year) { 1 } else { 0 }
 | |
| 	res := month_days[month - 1] + extra
 | |
| 	return res
 | |
| }
 | |
| 
 | |
| // str returns time in the same format as `parse` expects ("YYYY-MM-DD HH:MM:SS").
 | |
| pub fn (t Time) str() string {
 | |
| 	// TODO Define common default format for
 | |
| 	// `str` and `parse` and use it in both ways
 | |
| 	return t.format_ss()
 | |
| }
 | |
| 
 | |
| fn convert_ctime(t C.tm, microsecond int) Time {
 | |
| 	return Time{
 | |
| 		year: t.tm_year + 1900
 | |
| 		month: t.tm_mon + 1
 | |
| 		day: t.tm_mday
 | |
| 		hour: t.tm_hour
 | |
| 		minute: t.tm_min
 | |
| 		second: t.tm_sec
 | |
| 		microsecond: microsecond
 | |
| 		unix: u64(make_unix_time(t))
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // A lot of these are taken from the Go library
 | |
| pub type Duration i64
 | |
| 
 | |
| pub const(
 | |
| 	nanosecond  = Duration(1)
 | |
| 	microsecond = Duration(1000) * nanosecond
 | |
| 	millisecond = Duration(1000) * microsecond
 | |
| 	second       = Duration(1000) * millisecond
 | |
| 	minute       = Duration(60) * second
 | |
| 	hour         = Duration(60) * minute
 | |
| )
 | |
| 
 | |
| // nanoseconds returns the duration as an integer number of nanoseconds.
 | |
| pub fn (d Duration) nanoseconds() i64 { return i64(d) }
 | |
| 
 | |
| // microseconds returns the duration as an integer number of microseconds.
 | |
| pub fn (d Duration) microseconds() i64 { return i64(d) / 1000 }
 | |
| 
 | |
| // milliseconds returns the duration as an integer number of milliseconds.
 | |
| pub fn (d Duration) milliseconds() i64 { return i64(d) / 1_000_000 }
 | |
| 
 | |
| // The following functions return floating point numbers because it's common to
 | |
| // consider all of them in sub-one intervals
 | |
| 
 | |
| // seconds returns the duration as a floating point number of seconds.
 | |
| pub fn (d Duration) seconds() f64 {
 | |
| 	sec := d / second
 | |
| 	nsec := d % second
 | |
| 	return f64(sec) + f64(nsec)/1e9
 | |
| }
 | |
| 
 | |
| // minutes returns the duration as a floating point number of minutes.
 | |
| pub fn (d Duration) minutes() f64 {
 | |
| 	min := d / minute
 | |
| 	nsec := d % minute
 | |
| 	return f64(min) + f64(nsec)/(60*1e9)
 | |
| }
 | |
| 
 | |
| // hours returns the duration as a floating point number of hours.
 | |
| pub fn (d Duration) hours() f64 {
 | |
| 	hr := d / hour
 | |
| 	nsec := d % hour
 | |
| 	return f64(hr) + f64(nsec)/(60*60*1e9)
 | |
| }
 |