v/vlib/v/checker/checker.v

5206 lines
165 KiB
V

// Copyright (c) 2019-2020 Alexander Medvednikov. All rights reserved.
// Use of this source code is governed by an MIT license that can be found in the LICENSE file.
module checker
import os
import strings
import v.ast
import v.vmod
import v.table
import v.token
import v.pref
import v.util
import v.errors
import v.pkgconfig
const (
max_nr_errors = 300
match_exhaustive_cutoff_limit = 10
int_min = int(0x80000000)
int_max = 0x7FFFFFFF
)
const (
valid_comp_if_os = ['windows', 'ios', 'macos', 'mach', 'darwin', 'hpux', 'gnu', 'qnx',
'linux', 'freebsd', 'openbsd', 'netbsd', 'bsd', 'dragonfly', 'android', 'solaris', 'haiku', 'linux_or_macos']
valid_comp_if_compilers = ['gcc', 'tinyc', 'clang', 'mingw', 'msvc', 'cplusplus']
valid_comp_if_platforms = ['amd64', 'aarch64', 'x64', 'x32', 'little_endian', 'big_endian']
valid_comp_if_other = ['js', 'debug', 'test', 'glibc', 'prealloc', 'no_bounds_checking']
array_builtin_methods = ['filter', 'clone', 'repeat', 'reverse', 'map', 'slice', 'sort',
'contains', 'index']
)
pub struct Checker {
pref &pref.Preferences // Preferences shared from V struct
pub mut:
table &table.Table
file &ast.File = 0
nr_errors int
nr_warnings int
errors []errors.Error
warnings []errors.Warning
error_lines []int // to avoid printing multiple errors for the same line
expected_type table.Type
expected_or_type table.Type // fn() or { 'this type' } eg. string. expected or block type
cur_fn &ast.FnDecl // current function
const_decl string
const_deps []string
const_names []string
global_names []string
locked_names []string // vars that are currently locked
rlocked_names []string // vars that are currently read-locked
in_for_count int // if checker is currently in a for loop
// checked_ident string // to avoid infinite checker loops
returns bool
scope_returns bool
mod string // current module name
is_builtin_mod bool // are we in `builtin`?
inside_unsafe bool
inside_const bool
skip_flags bool // should `#flag` and `#include` be skipped
cur_generic_type table.Type
mut:
expr_level int // to avoid infinite recursion segfaults due to compiler bugs
inside_sql bool // to handle sql table fields pseudo variables
cur_orm_ts table.TypeSymbol
error_details []string
vmod_file_content string // needed for @VMOD_FILE, contents of the file, *NOT its path**
vweb_gen_types []table.Type // vweb route checks
prevent_sum_type_unwrapping_once bool // needed for assign new values to sum type, stopping unwrapping then
loop_label string // set when inside a labelled for loop
timers &util.Timers = util.new_timers(false)
comptime_fields_type map[string]table.Type
}
pub fn new_checker(table &table.Table, pref &pref.Preferences) Checker {
mut timers_should_print := false
$if time_checking ? {
timers_should_print = true
}
return Checker{
table: table
pref: pref
cur_fn: 0
timers: util.new_timers(timers_should_print)
}
}
pub fn (mut c Checker) check(ast_file &ast.File) {
c.file = ast_file
for i, ast_import in ast_file.imports {
for j in 0 .. i {
if ast_import.mod == ast_file.imports[j].mod {
c.error('module name `$ast_import.mod` duplicate', ast_import.pos)
}
}
}
for stmt in ast_file.stmts {
c.expr_level = 0
c.stmt(stmt)
}
c.check_scope_vars(c.file.scope)
}
pub fn (mut c Checker) check_scope_vars(sc &ast.Scope) {
for _, obj in sc.objects {
match obj {
ast.Var {
if !c.pref.is_repl {
if !obj.is_used && obj.name[0] != `_` {
c.warn('unused variable: `$obj.name`', obj.pos)
}
}
if obj.is_mut && !obj.is_changed && !c.is_builtin_mod && obj.name != 'it' {
// if obj.is_mut && !obj.is_changed && !c.is_builtin { //TODO C error bad field not checked
// c.warn('`$obj.name` is declared as mutable, but it was never changed',
// obj.pos)
}
}
else {}
}
}
for _, child in sc.children {
c.check_scope_vars(child)
}
}
// not used right now
pub fn (mut c Checker) check2(ast_file &ast.File) []errors.Error {
c.file = ast_file
for stmt in ast_file.stmts {
c.stmt(stmt)
}
return c.errors
}
pub fn (mut c Checker) check_files(ast_files []ast.File) {
mut has_main_mod_file := false
mut has_main_fn := false
mut files_from_main_module := []&ast.File{}
for i in 0 .. ast_files.len {
file := unsafe { &ast_files[i] }
c.timers.start('checker_check $file.path')
c.check(file)
if file.mod.name == 'main' {
files_from_main_module << file
has_main_mod_file = true
if c.check_file_in_main(file) {
has_main_fn = true
}
}
c.timers.show('checker_check $file.path')
}
if has_main_mod_file && !has_main_fn && files_from_main_module.len > 0 {
if c.pref.is_script && !c.pref.is_test {
mut first_main_file := files_from_main_module[0]
first_main_file.stmts << ast.FnDecl{
name: 'main.main'
mod: 'main'
file: first_main_file.path
return_type: table.void_type
scope: &ast.Scope{
parent: 0
}
}
has_main_fn = true
}
}
c.timers.start('checker_post_process_generic_fns')
// post process generic functions. must be done after all files have been
// checked, to eunsure all generic calls are processed as this information
// is needed when the generic type is auto inferred from the call argument
for i in 0 .. ast_files.len {
file := unsafe { &ast_files[i] }
if file.generic_fns.len > 0 {
c.file = file
c.mod = file.mod.name
c.post_process_generic_fns()
}
}
c.timers.show('checker_post_process_generic_fns')
//
c.timers.start('checker_verify_all_vweb_routes')
c.verify_all_vweb_routes()
c.timers.show('checker_verify_all_vweb_routes')
//
// Make sure fn main is defined in non lib builds
if c.pref.build_mode == .build_module || c.pref.is_test {
return
}
if c.pref.is_shared {
// shared libs do not need to have a main
return
}
if !has_main_mod_file {
c.error('project must include a `main` module or be a shared library (compile with `v -shared`)',
token.Position{})
} else if !has_main_fn {
c.error('function `main` must be declared in the main module', token.Position{})
}
}
const (
no_pub_in_main_warning = 'in module main cannot be declared public'
)
// do checks specific to files in main module
// returns `true` if a main function is in the file
fn (mut c Checker) check_file_in_main(file ast.File) bool {
mut has_main_fn := false
for stmt in file.stmts {
match stmt {
ast.ConstDecl {
if stmt.is_pub {
c.warn('const $no_pub_in_main_warning', stmt.pos)
}
}
/*
// TODO not a Stmt
ast.ConstField {
if stmt.is_pub {
c.warn('const field `$stmt.name` $no_pub_in_main_warning', stmt.pos)
}
}
*/
ast.EnumDecl {
if stmt.is_pub {
c.warn('enum `$stmt.name` $no_pub_in_main_warning', stmt.pos)
}
}
ast.FnDecl {
if stmt.name == 'main.main' {
if has_main_fn {
c.error('function `main` is already defined', stmt.pos)
}
has_main_fn = true
if stmt.is_pub {
c.error('function `main` cannot be declared public', stmt.pos)
}
if stmt.params.len > 0 {
c.error('function `main` cannot have arguments', stmt.pos)
}
if stmt.return_type != table.void_type {
c.error('function `main` cannot return values', stmt.pos)
}
} else {
for attr in stmt.attrs {
if attr.name == 'console' {
c.error('only `main` can have the `[console]` attribute',
stmt.pos)
}
}
if stmt.is_pub && !stmt.is_method {
c.warn('function `$stmt.name` $no_pub_in_main_warning', stmt.pos)
}
}
if stmt.return_type != table.void_type {
for attr in stmt.attrs {
if attr.is_ctdefine {
c.error('only functions that do NOT return values can have `[if $attr.name]` tags',
stmt.pos)
break
}
}
}
}
ast.StructDecl {
if stmt.is_pub {
c.warn('struct `$stmt.name` $no_pub_in_main_warning', stmt.pos)
}
}
ast.TypeDecl {
if stmt is ast.AliasTypeDecl {
if stmt.is_pub {
c.warn('type alias `$stmt.name` $no_pub_in_main_warning', stmt.pos)
}
} else if stmt is ast.SumTypeDecl {
if stmt.is_pub {
c.warn('sum type `$stmt.name` $no_pub_in_main_warning', stmt.pos)
}
} else if stmt is ast.FnTypeDecl {
if stmt.is_pub {
c.warn('type alias `$stmt.name` $no_pub_in_main_warning', stmt.pos)
}
}
}
else {}
}
}
return has_main_fn
}
fn (mut c Checker) check_valid_snake_case(name string, identifier string, pos token.Position) {
if !c.pref.is_vweb && name.len > 0 && (name[0] == `_` || name.contains('._')) {
c.error('$identifier `$name` cannot start with `_`', pos)
}
if !c.pref.experimental && !c.pref.translated && util.contains_capital(name) {
c.error('$identifier `$name` cannot contain uppercase letters, use snake_case instead',
pos)
}
}
fn stripped_name(name string) string {
idx := name.last_index('.') or { -1 }
return name[(idx + 1)..]
}
fn (mut c Checker) check_valid_pascal_case(name string, identifier string, pos token.Position) {
sname := stripped_name(name)
if sname.len > 0 && !sname[0].is_capital() && !c.pref.translated {
c.error('$identifier `$name` must begin with capital letter', pos)
}
}
pub fn (mut c Checker) type_decl(node ast.TypeDecl) {
match node {
ast.AliasTypeDecl {
// TODO Replace `c.file.mod.name != 'time'` by `it.language != .v` once available
if c.file.mod.name != 'time' && c.file.mod.name != 'builtin' {
c.check_valid_pascal_case(node.name, 'type alias', node.pos)
}
typ_sym := c.table.get_type_symbol(node.parent_type)
if typ_sym.kind in [.placeholder, .any_int, .any_float] {
c.error("type `$typ_sym.name` doesn't exist", node.pos)
} else if typ_sym.kind == .alias {
orig_sym := c.table.get_type_symbol((typ_sym.info as table.Alias).parent_type)
c.error('type `$typ_sym.str()` is an alias, use the original alias type `$orig_sym.name` instead',
node.pos)
} else if typ_sym.kind == .chan {
c.error('aliases of `chan` types are not allowed.', node.pos)
}
}
ast.FnTypeDecl {
c.check_valid_pascal_case(node.name, 'fn type', node.pos)
typ_sym := c.table.get_type_symbol(node.typ)
fn_typ_info := typ_sym.info as table.FnType
fn_info := fn_typ_info.func
ret_sym := c.table.get_type_symbol(fn_info.return_type)
if ret_sym.kind == .placeholder {
c.error("type `$ret_sym.name` doesn't exist", node.pos)
}
for arg in fn_info.params {
arg_sym := c.table.get_type_symbol(arg.typ)
if arg_sym.kind == .placeholder {
c.error("type `$arg_sym.name` doesn't exist", node.pos)
}
}
}
ast.SumTypeDecl {
c.check_valid_pascal_case(node.name, 'sum type', node.pos)
mut names_used := []string{}
for variant in node.variants {
if variant.typ.is_ptr() {
c.error('sum type cannot hold a reference type', variant.pos)
}
mut sym := c.table.get_type_symbol(variant.typ)
if sym.name in names_used {
c.error('sum type $node.name cannot hold the type `$sym.name` more than once',
variant.pos)
} else if sym.kind in [.placeholder, .any_int, .any_float] {
c.error("type `$sym.name` doesn't exist", variant.pos)
} else if sym.kind == .interface_ {
c.error('sum type cannot hold an interface', variant.pos)
}
names_used << sym.name
}
}
}
}
pub fn (mut c Checker) interface_decl(decl ast.InterfaceDecl) {
c.check_valid_pascal_case(decl.name, 'interface name', decl.pos)
for method in decl.methods {
c.check_valid_snake_case(method.name, 'method name', method.pos)
}
}
pub fn (mut c Checker) struct_decl(decl ast.StructDecl) {
if decl.language == .v && !c.is_builtin_mod {
c.check_valid_pascal_case(decl.name, 'struct name', decl.pos)
}
mut struct_sym := c.table.find_type(decl.name) or { table.TypeSymbol{} }
if mut struct_sym.info is table.Struct {
for embed in decl.embeds {
embed_sym := c.table.get_type_symbol(embed.typ)
if embed_sym.kind != .struct_ {
c.error('`$embed_sym.name` is not a struct', embed.pos)
}
}
for i, field in decl.fields {
if decl.language == .v {
c.check_valid_snake_case(field.name, 'field name', field.pos)
}
sym := c.table.get_type_symbol(field.typ)
for j in 0 .. i {
if field.name == decl.fields[j].name {
c.error('field name `$field.name` duplicate', field.pos)
}
}
if sym.kind == .placeholder && decl.language != .c && !sym.name.starts_with('C.') {
c.error(util.new_suggestion(sym.name, c.table.known_type_names()).say('unknown type `$sym.name`'),
field.type_pos)
}
// Separate error condition for `any_int` and `any_float` because `util.suggestion` may give different
// suggestions due to f32 comparision issue.
if sym.kind in [.any_int, .any_float] {
msg := if sym.kind == .any_int {
'unknown type `$sym.name`.\nDid you mean `int`?'
} else {
'unknown type `$sym.name`.\nDid you mean `f64`?'
}
c.error(msg, field.type_pos)
}
if sym.kind == .array {
array_info := sym.array_info()
elem_sym := c.table.get_type_symbol(array_info.elem_type)
if elem_sym.kind == .placeholder {
c.error(util.new_suggestion(elem_sym.name, c.table.known_type_names()).say('unknown type `$elem_sym.name`'),
field.type_pos)
}
}
if sym.kind == .struct_ {
info := sym.info as table.Struct
if info.is_ref_only && !field.typ.is_ptr() {
c.error('`$sym.name` type can only be used as a reference: `&$sym.name`',
field.type_pos)
}
}
if sym.kind == .map {
info := sym.map_info()
key_sym := c.table.get_type_symbol(info.key_type)
value_sym := c.table.get_type_symbol(info.value_type)
if key_sym.kind == .placeholder {
c.error('unknown type `$key_sym.name`', field.type_pos)
}
if value_sym.kind == .placeholder {
c.error('unknown type `$value_sym.name`', field.type_pos)
}
}
if field.has_default_expr {
c.expected_type = field.typ
field_expr_type := c.expr(field.default_expr)
c.check_expected(field_expr_type, field.typ) or {
c.error('incompatible initializer for field `$field.name`: $err',
field.default_expr.position())
}
// Check for unnecessary inits like ` = 0` and ` = ''`
if field.typ.is_ptr() {
continue
}
if field.default_expr is ast.IntegerLiteral {
if field.default_expr.val == '0' {
c.warn('unnecessary default value of `0`: struct fields are zeroed by default',
field.default_expr.pos)
}
} else if field.default_expr is ast.StringLiteral {
if field.default_expr.val == '' {
c.warn("unnecessary default value of '': struct fields are zeroed by default",
field.default_expr.pos)
}
} else if field.default_expr is ast.BoolLiteral {
if field.default_expr.val == false {
c.warn('unnecessary default value `false`: struct fields are zeroed by default',
field.default_expr.pos)
}
}
}
}
}
}
pub fn (mut c Checker) struct_init(mut struct_init ast.StructInit) table.Type {
// typ := c.table.find_type(struct_init.typ.typ.name) or {
// c.error('unknown struct: $struct_init.typ.typ.name', struct_init.pos)
// panic('')
// }
if struct_init.typ == table.void_type {
// Short syntax `({foo: bar})`
if c.expected_type == table.void_type {
c.error('unexpected short struct syntax', struct_init.pos)
return table.void_type
}
struct_init.typ = c.expected_type
}
if struct_init.typ == 0 {
c.error('unknown type', struct_init.pos)
}
type_sym := c.table.get_type_symbol(struct_init.typ)
if type_sym.kind == .sum_type && struct_init.fields.len == 1 {
sexpr := struct_init.fields[0].expr.str()
c.error('cast to sum type using `${type_sym.name}($sexpr)` not `$type_sym.name{$sexpr}`',
struct_init.pos)
}
if type_sym.kind == .interface_ {
c.error('cannot instantiate interface `$type_sym.name`', struct_init.pos)
}
if type_sym.kind == .alias {
info := type_sym.info as table.Alias
if info.parent_type.is_number() {
c.error('cannot instantiate number type alias `$type_sym.name`', struct_init.pos)
return table.void_type
}
}
if !type_sym.is_public && type_sym.kind != .placeholder && type_sym.mod != c.mod &&
type_sym.language != .c {
c.error('type `$type_sym.name` is private', struct_init.pos)
}
if type_sym.kind == .struct_ {
info := type_sym.info as table.Struct
if info.attrs.len > 0 && info.attrs[0].name == 'noinit' && type_sym.mod != c.mod {
c.error('struct `$type_sym.name` is declared with a `[noinit]` attribute, so ' + 'it cannot be initialized with `$type_sym.name{}`',
struct_init.pos)
}
}
match type_sym.kind {
.placeholder {
c.error('unknown struct: $type_sym.name', struct_init.pos)
}
// string & array are also structs but .kind of string/array
.struct_, .string, .array, .alias {
mut info := table.Struct{}
if type_sym.kind == .alias {
info_t := type_sym.info as table.Alias
sym := c.table.get_type_symbol(info_t.parent_type)
if sym.kind == .placeholder { // pending import symbol did not resolve
c.error('unknown struct: $type_sym.name', struct_init.pos)
return table.void_type
}
if sym.kind != .struct_ {
c.error('alias type name: $sym.name is not struct type', struct_init.pos)
}
info = sym.info as table.Struct
} else {
info = type_sym.info as table.Struct
}
if struct_init.is_short {
exp_len := info.fields.len
got_len := struct_init.fields.len
if exp_len != got_len {
amount := if exp_len < got_len { 'many' } else { 'few' }
c.error('too $amount fields in `$type_sym.name` literal (expecting $exp_len, got $got_len)',
struct_init.pos)
}
}
mut inited_fields := []string{}
for i, field in struct_init.fields {
mut info_field := table.Field{}
mut embed_type := table.Type(0)
mut is_embed := false
mut field_name := ''
if struct_init.is_short {
if i >= info.fields.len {
// It doesn't make sense to check for fields that don't exist.
// We should just stop here.
break
}
info_field = info.fields[i]
field_name = info_field.name
struct_init.fields[i].name = field_name
} else {
field_name = field.name
mut exists := false
for f in info.fields {
if f.name == field_name {
info_field = f
exists = true
break
}
}
if !exists {
for embed in info.embeds {
embed_sym := c.table.get_type_symbol(embed)
if embed_sym.embed_name() == field_name {
exists = true
embed_type = embed
is_embed = true
break
}
}
}
if !exists {
c.error('unknown field `$field.name` in struct literal of type `$type_sym.name`',
field.pos)
continue
}
if field_name in inited_fields {
c.error('duplicate field name in struct literal: `$field_name`',
field.pos)
continue
}
}
if is_embed {
c.expected_type = embed_type
expr_type := c.expr(field.expr)
expr_type_sym := c.table.get_type_symbol(expr_type)
if expr_type != table.void_type && expr_type_sym.kind != .placeholder {
c.check_expected(expr_type, embed_type) or {
c.error('cannot assign to field `$info_field.name`: $err',
field.pos)
}
}
struct_init.fields[i].typ = expr_type
struct_init.fields[i].expected_type = embed_type
} else {
inited_fields << field_name
field_type_sym := c.table.get_type_symbol(info_field.typ)
c.expected_type = info_field.typ
expr_type := c.expr(field.expr)
expr_type_sym := c.table.get_type_symbol(expr_type)
if field_type_sym.kind == .interface_ {
c.type_implements(expr_type, info_field.typ, field.pos)
} else if expr_type != table.void_type && expr_type_sym.kind != .placeholder {
c.check_expected(expr_type, info_field.typ) or {
c.error('cannot assign to field `$info_field.name`: $err',
field.pos)
}
}
if info_field.typ.is_ptr() && !expr_type.is_ptr() && !expr_type.is_pointer() &&
!expr_type.is_number() {
c.error('ref', field.pos)
}
struct_init.fields[i].typ = expr_type
struct_init.fields[i].expected_type = info_field.typ
}
}
// Check uninitialized refs
for field in info.fields {
if field.has_default_expr || field.name in inited_fields {
continue
}
if field.typ.is_ptr() && !c.pref.translated {
c.error('reference field `${type_sym.name}.$field.name` must be initialized',
struct_init.pos)
}
// Check for `[required]` struct attr
if field.attrs.contains('required') && !struct_init.is_short {
mut found := false
for init_field in struct_init.fields {
if field.name == init_field.name {
found = true
break
}
}
if !found {
c.error('field `${type_sym.name}.$field.name` must be initialized',
struct_init.pos)
}
}
}
}
else {}
}
if struct_init.has_update_expr {
update_type := c.expr(struct_init.update_expr)
struct_init.update_expr_type = update_type
update_sym := c.table.get_type_symbol(update_type)
sym := c.table.get_type_symbol(struct_init.typ)
if update_sym.kind != .struct_ {
c.error('expected struct `$sym.name`, found `$update_sym.name`', struct_init.update_expr.position())
} else if update_type != struct_init.typ {
c.error('expected struct `$sym.name`, found struct `$update_sym.name`', struct_init.update_expr.position())
}
}
return struct_init.typ
}
fn (mut c Checker) check_div_mod_by_zero(expr ast.Expr, op_kind token.Kind) {
match mut expr {
ast.FloatLiteral {
if expr.val.f64() == 0.0 {
oper := if op_kind == .div { 'division' } else { 'modulo' }
c.error('$oper by zero', expr.pos)
}
}
ast.IntegerLiteral {
if expr.val.int() == 0 {
oper := if op_kind == .div { 'division' } else { 'modulo' }
c.error('$oper by zero', expr.pos)
}
}
ast.CastExpr {
c.check_div_mod_by_zero(expr.expr, op_kind)
}
else {}
}
}
pub fn (mut c Checker) infix_expr(mut infix_expr ast.InfixExpr) table.Type {
// println('checker: infix expr(op $infix_expr.op.str())')
former_expected_type := c.expected_type
defer {
c.expected_type = former_expected_type
}
c.expected_type = table.void_type
left_type := c.expr(infix_expr.left)
// left_type = c.unwrap_genric(c.expr(infix_expr.left))
infix_expr.left_type = left_type
c.expected_type = left_type
right_type := c.expr(infix_expr.right)
// right_type = c.unwrap_genric(c.expr(infix_expr.right))
infix_expr.right_type = right_type
mut right := c.table.get_type_symbol(right_type)
mut left := c.table.get_type_symbol(left_type)
left_pos := infix_expr.left.position()
right_pos := infix_expr.right.position()
if (left_type.is_ptr() || left.is_pointer()) && infix_expr.op in [.plus, .minus] {
if !c.inside_unsafe {
c.warn('pointer arithmetic is only allowed in `unsafe` blocks', left_pos)
}
if left_type == table.voidptr_type {
c.error('`$infix_expr.op` cannot be used with `voidptr`', left_pos)
}
}
mut return_type := left_type
if infix_expr.op != .key_is {
match mut infix_expr.left {
ast.Ident, ast.SelectorExpr {
if infix_expr.left.is_mut {
c.error('remove unnecessary `mut`', infix_expr.left.mut_pos)
}
}
else {}
}
}
// Single side check
// Place these branches according to ops' usage frequency to accelerate.
// TODO: First branch includes ops where single side check is not needed, or needed but hasn't been implemented.
// TODO: Some of the checks are not single side. Should find a better way to organize them.
match infix_expr.op {
// .eq, .ne, .gt, .lt, .ge, .le, .and, .logical_or, .dot, .key_as, .right_shift {}
.eq, .ne {
is_alias_eq_struct := left.kind == .alias && right.kind == .struct_
is_struct_eq_alias := left.kind == .struct_ && right.kind == .alias
if is_alias_eq_struct || is_struct_eq_alias {
c.error('possible type mismatch of compared values of `$infix_expr.op` operation',
infix_expr.pos)
}
}
.key_in, .not_in {
match right.kind {
.array {
elem_type := right.array_info().elem_type
// if left_default.kind != right_sym.kind {
c.check_expected(left_type, elem_type) or {
c.error('left operand to `$infix_expr.op` does not match the array element type: $err',
infix_expr.pos)
}
}
.map {
elem_type := right.map_info().key_type
c.check_expected(left_type, elem_type) or {
c.error('left operand to `$infix_expr.op` does not match the map key type: $err',
infix_expr.pos)
}
}
.string {
c.check_expected(left_type, right_type) or {
c.error('left operand to `$infix_expr.op` does not match: $err',
infix_expr.pos)
}
}
else {
c.error('`$infix_expr.op.str()` can only be used with an array/map/string',
infix_expr.pos)
}
}
return table.bool_type
}
.plus, .minus, .mul, .div, .mod, .xor, .amp, .pipe { // binary operators that expect matching types
if right.info is table.Alias &&
(right.info as table.Alias).language != .c && c.mod == c.table.type_to_str(right_type).split('.')[0] {
right = c.table.get_type_symbol((right.info as table.Alias).parent_type)
}
if left.info is table.Alias &&
(left.info as table.Alias).language != .c && c.mod == c.table.type_to_str(left_type).split('.')[0] {
left = c.table.get_type_symbol((left.info as table.Alias).parent_type)
}
if left.kind in [.array, .array_fixed, .map, .struct_] {
if left.has_method(infix_expr.op.str()) {
if method := left.find_method(infix_expr.op.str()) {
return_type = method.return_type
} else {
return_type = left_type
}
} else {
left_name := c.table.type_to_str(left_type)
right_name := c.table.type_to_str(right_type)
if left_name == right_name {
c.error('operation `$left_name` $infix_expr.op.str() `$right_name` does not exist, please define it',
left_pos)
} else {
c.error('mismatched types `$left_name` and `$right_name`', left_pos)
}
}
} else if right.kind in [.array, .array_fixed, .map, .struct_] {
if right.has_method(infix_expr.op.str()) {
if method := right.find_method(infix_expr.op.str()) {
return_type = method.return_type
} else {
return_type = right_type
}
} else {
left_name := c.table.type_to_str(left_type)
right_name := c.table.type_to_str(right_type)
if left_name == right_name {
c.error('operation `$left_name` $infix_expr.op.str() `$right_name` does not exist, please define it',
right_pos)
} else {
c.error('mismatched types `$left_name` and `$right_name`', right_pos)
}
}
} else {
promoted_type := c.promote(c.table.unalias_num_type(left_type), c.table.unalias_num_type(right_type))
if promoted_type.idx() == table.void_type_idx {
left_name := c.table.type_to_str(left_type)
right_name := c.table.type_to_str(right_type)
c.error('mismatched types `$left_name` and `$right_name`', infix_expr.pos)
} else if promoted_type.has_flag(.optional) {
s := c.table.type_to_str(promoted_type)
c.error('`$infix_expr.op` cannot be used with `$s`', infix_expr.pos)
} else if promoted_type.is_float() {
if infix_expr.op in [.mod, .xor, .amp, .pipe] {
side := if left_type == promoted_type { 'left' } else { 'right' }
pos := if left_type == promoted_type { left_pos } else { right_pos }
name := if left_type == promoted_type { left.name } else { right.name }
if infix_expr.op == .mod {
c.error('float modulo not allowed, use math.fmod() instead',
pos)
} else {
c.error('$side type of `$infix_expr.op.str()` cannot be non-integer type `$name`',
pos)
}
}
}
if infix_expr.op in [.div, .mod] {
c.check_div_mod_by_zero(infix_expr.right, infix_expr.op)
}
return_type = promoted_type
}
}
.gt, .lt, .ge, .le {
if left.kind in [.array, .array_fixed] && right.kind in [.array, .array_fixed] {
c.error('only `==` and `!=` are defined on arrays', infix_expr.pos)
}
}
.left_shift {
if left.kind == .array {
// `array << elm`
infix_expr.auto_locked, _ = c.fail_if_immutable(infix_expr.left)
left_value_type := c.table.value_type(left_type)
left_value_sym := c.table.get_type_symbol(left_value_type)
if left_value_sym.kind == .interface_ {
if right.kind != .array {
// []Animal << Cat
c.type_implements(right_type, left_value_type, right_pos)
} else {
// []Animal << Cat
c.type_implements(c.table.value_type(right_type), left_value_type,
right_pos)
}
return table.void_type
}
// the expressions have different types (array_x and x)
if c.check_types(right_type, left_value_type) { // , right_type) {
// []T << T
return table.void_type
}
if right.kind == .array &&
c.check_types(left_value_type, c.table.value_type(right_type)) {
// []T << []T
return table.void_type
}
c.error('cannot append `$right.name` to `$left.name`', right_pos)
return table.void_type
} else {
return c.check_shift(left_type, right_type, left_pos, right_pos)
}
}
.right_shift {
return c.check_shift(left_type, right_type, left_pos, right_pos)
}
.key_is, .not_is {
type_expr := infix_expr.right as ast.Type
typ_sym := c.table.get_type_symbol(type_expr.typ)
if typ_sym.kind == .placeholder {
c.error('$infix_expr.op.str(): type `$typ_sym.name` does not exist', type_expr.pos)
}
if left.kind !in [.interface_, .sum_type] {
c.error('`$infix_expr.op.str()` can only be used with interfaces and sum types',
infix_expr.pos)
} else if mut left.info is table.SumType {
if type_expr.typ !in left.info.variants {
c.error('`$left.name` has no variant `$right.name`', infix_expr.pos)
}
}
return table.bool_type
}
.arrow { // `chan <- elem`
if left.kind == .chan {
chan_info := left.chan_info()
elem_type := chan_info.elem_type
if !c.check_types(right_type, elem_type) {
c.error('cannot push `$right.name` on `$left.name`', right_pos)
}
if chan_info.is_mut {
// TODO: The error message of the following could be more specific...
c.fail_if_immutable(infix_expr.right)
}
if elem_type.is_ptr() && !right_type.is_ptr() {
c.error('cannot push non-reference `$right.name` on `$left.name`',
right_pos)
}
c.stmts(infix_expr.or_block.stmts)
} else {
c.error('cannot push on non-channel `$left.name`', left_pos)
}
return table.void_type
}
.and, .logical_or {
if infix_expr.left_type != table.bool_type_idx {
c.error('left operand for `$infix_expr.op` is not a boolean', infix_expr.left.position())
}
if infix_expr.right_type != table.bool_type_idx {
c.error('right operand for `$infix_expr.op` is not a boolean', infix_expr.right.position())
}
// use `()` to make the boolean expression clear error
// for example: `(a && b) || c` instead of `a && b || c`
if mut infix_expr.left is ast.InfixExpr {
if infix_expr.left.op != infix_expr.op && infix_expr.left.op in [.logical_or, .and] {
c.error('use `()` to make the boolean expression clear', infix_expr.pos)
}
}
}
else {}
}
// TODO: Absorb this block into the above single side check block to accelerate.
if left_type == table.bool_type && infix_expr.op !in [.eq, .ne, .logical_or, .and] {
c.error('bool types only have the following operators defined: `==`, `!=`, `||`, and `&&`',
infix_expr.pos)
} else if left_type == table.string_type &&
infix_expr.op !in [.plus, .eq, .ne, .lt, .gt, .le, .ge] {
// TODO broken !in
c.error('string types only have the following operators defined: `==`, `!=`, `<`, `>`, `<=`, `>=`, and `+`',
infix_expr.pos)
}
// sum types can't have any infix operation except of "is", is is checked before and doesn't reach this
if c.table.type_kind(left_type) == .sum_type {
c.error('cannot use operator `$infix_expr.op` with `$left.name`', infix_expr.pos)
} else if c.table.type_kind(right_type) == .sum_type {
c.error('cannot use operator `$infix_expr.op` with `$right.name`', infix_expr.pos)
}
// TODO move this to symmetric_check? Right now it would break `return 0` for `fn()?int `
left_is_optional := left_type.has_flag(.optional)
right_is_optional := right_type.has_flag(.optional)
if (left_is_optional && !right_is_optional) || (!left_is_optional && right_is_optional) {
c.error('unwrapped optional cannot be used in an infix expression', infix_expr.pos)
}
// Dual sides check (compatibility check)
if !c.symmetric_check(right_type, left_type) && !c.pref.translated {
// for type-unresolved consts
if left_type == table.void_type || right_type == table.void_type {
return table.void_type
}
c.error('infix expr: cannot use `$right.name` (right expression) as `$left.name`',
infix_expr.pos)
}
/*
if (infix_expr.left is ast.InfixExpr &&
(infix_expr.left as ast.InfixExpr).op == .inc) ||
(infix_expr.right is ast.InfixExpr && (infix_expr.right as ast.InfixExpr).op == .inc) {
c.warn('`++` and `--` are statements, not expressions', infix_expr.pos)
}
*/
return if infix_expr.op.is_relational() {
table.bool_type
} else {
return_type
}
}
// returns name and position of variable that needs write lock
// also sets `is_changed` to true (TODO update the name to reflect this?)
fn (mut c Checker) fail_if_immutable(expr ast.Expr) (string, token.Position) {
mut to_lock := '' // name of variable that needs lock
mut pos := token.Position{} // and its position
mut explicit_lock_needed := false
match mut expr {
ast.CastExpr {
// TODO
return '', pos
}
ast.ComptimeSelector {
return '', pos
}
ast.Ident {
if expr.obj is ast.Var {
mut v := expr.obj as ast.Var
if !v.is_mut && !c.pref.translated && !c.inside_unsafe {
c.error('`$expr.name` is immutable, declare it with `mut` to make it mutable',
expr.pos)
}
v.is_changed = true
if v.typ.share() == .shared_t {
if expr.name !in c.locked_names {
to_lock = expr.name
pos = expr.pos
}
}
} else if expr.name in c.const_names {
c.error('cannot modify constant `$expr.name`', expr.pos)
}
}
ast.IndexExpr {
to_lock, pos = c.fail_if_immutable(expr.left)
}
ast.ParExpr {
to_lock, pos = c.fail_if_immutable(expr.expr)
}
ast.PrefixExpr {
to_lock, pos = c.fail_if_immutable(expr.right)
}
ast.SelectorExpr {
// retrieve table.Field
if expr.expr_type == 0 {
c.error('0 type in SelectorExpr', expr.pos)
return '', pos
}
mut typ_sym := c.table.get_type_symbol(c.unwrap_generic(expr.expr_type))
if mut typ_sym.info is table.Alias {
typ_sym = c.table.get_type_symbol(typ_sym.info.parent_type)
}
match typ_sym.kind {
.struct_ {
struct_info := typ_sym.info as table.Struct
mut has_field := true
mut field_info := struct_info.find_field(expr.field_name) or {
has_field = false
table.Field{}
}
if !has_field {
for embed in struct_info.embeds {
embed_sym := c.table.get_type_symbol(embed)
embed_struct_info := embed_sym.info as table.Struct
if embed_field_info := embed_struct_info.find_field(expr.field_name) {
has_field = true
field_info = embed_field_info
break
}
}
}
if !has_field {
type_str := c.table.type_to_str(expr.expr_type)
c.error('unknown field `${type_str}.$expr.field_name`', expr.pos)
return '', pos
}
if !field_info.is_mut && !c.pref.translated {
type_str := c.table.type_to_str(expr.expr_type)
c.error('field `$expr.field_name` of struct `$type_str` is immutable',
expr.pos)
}
to_lock, pos = c.fail_if_immutable(expr.expr)
if to_lock != '' {
// No automatic lock for struct access
explicit_lock_needed = true
}
if struct_info.is_union && !c.inside_unsafe {
c.warn('accessing union fields requires `unsafe`', expr.pos)
}
}
.array, .string {
// This should only happen in `builtin`
// TODO Remove `crypto.rand` when possible (see vlib/crypto/rand/rand.v,
// if `c_array_to_bytes_tmp` doesn't exist, then it's safe to remove it)
if c.file.mod.name !in ['builtin', 'crypto.rand'] {
c.error('`$typ_sym.kind` can not be modified', expr.pos)
}
}
else {
c.error('unexpected symbol `$typ_sym.kind`', expr.pos)
}
}
}
ast.CallExpr {
// TODO: should only work for builtin method
if expr.name == 'slice' {
to_lock, pos = c.fail_if_immutable(expr.left)
if to_lock != '' {
// No automatic lock for array slicing (yet(?))
explicit_lock_needed = true
}
}
}
ast.ArrayInit {
return '', pos
}
else {
c.error('unexpected expression `$expr.type_name()`', expr.position())
}
}
if explicit_lock_needed {
c.error('`$to_lock` is `shared` and needs explicit lock for `$expr.type_name()`',
pos)
to_lock = ''
}
return to_lock, pos
}
pub fn (mut c Checker) call_expr(mut call_expr ast.CallExpr) table.Type {
// First check everything that applies to both fns and methods
// TODO merge logic from call_method and call_fn
/*
for i, call_arg in call_expr.args {
if call_arg.is_mut {
c.fail_if_immutable(call_arg.expr)
if !arg.is_mut {
tok := call_arg.share.str()
c.error('`$call_expr.name` parameter `$arg.name` is not `$tok`, `$tok` is not needed`',
call_arg.expr.position())
} else if arg.typ.share() != call_arg.share {
c.error('wrong shared type', call_arg.expr.position())
}
} else {
if arg.is_mut && (!call_arg.is_mut || arg.typ.share() != call_arg.share) {
tok := call_arg.share.str()
c.error('`$call_expr.name` parameter `$arg.name` is `$tok`, you need to provide `$tok` e.g. `$tok arg${i+1}`',
call_arg.expr.position())
}
}
}
*/
// Now call `call_method` or `call_fn` for specific checks.
typ := if call_expr.is_method { c.call_method(mut call_expr) } else { c.call_fn(mut call_expr) }
// autofree: mark args that have to be freed (after saving them in tmp exprs)
free_tmp_arg_vars := c.pref.autofree && !c.is_builtin_mod && call_expr.args.len > 0 && !call_expr.args[0].typ.has_flag(.optional)
if free_tmp_arg_vars && !c.inside_const {
for i, arg in call_expr.args {
if arg.typ != table.string_type {
continue
}
if arg.expr is ast.Ident ||
arg.expr is ast.StringLiteral || arg.expr is ast.SelectorExpr {
// Simple expressions like variables, string literals, selector expressions
// (`x.field`) can't result in allocations and don't need to be assigned to
// temporary vars.
// Only expressions like `str + 'b'` need to be freed.
continue
}
call_expr.args[i].is_tmp_autofree = true
}
// TODO copy pasta from above
if call_expr.receiver_type == table.string_type && !(call_expr.left is ast.Ident ||
call_expr.left is ast.StringLiteral || call_expr.left is ast.SelectorExpr) {
call_expr.free_receiver = true
}
}
c.expected_or_type = call_expr.return_type.clear_flag(.optional)
c.stmts(call_expr.or_block.stmts)
c.expected_or_type = table.void_type
return typ
}
fn (mut c Checker) check_map_and_filter(is_map bool, elem_typ table.Type, call_expr ast.CallExpr) {
if call_expr.args.len != 1 {
c.error('expected 1 arguments, but got $call_expr.args.len', call_expr.pos)
// Finish early so that it doesn't fail later
return
}
elem_sym := c.table.get_type_symbol(elem_typ)
arg_expr := call_expr.args[0].expr
match arg_expr {
ast.AnonFn {
if arg_expr.decl.params.len > 1 {
c.error('function needs exactly 1 argument', arg_expr.decl.pos)
} else if is_map &&
(arg_expr.decl.return_type == table.void_type || arg_expr.decl.params[0].typ != elem_typ) {
c.error('type mismatch, should use `fn(a $elem_sym.name) T {...}`', arg_expr.decl.pos)
} else if !is_map &&
(arg_expr.decl.return_type != table.bool_type || arg_expr.decl.params[0].typ != elem_typ) {
c.error('type mismatch, should use `fn(a $elem_sym.name) bool {...}`',
arg_expr.decl.pos)
}
}
ast.Ident {
if arg_expr.kind == .function {
func := c.table.find_fn(arg_expr.name) or {
c.error('$arg_expr.name is not exist', arg_expr.pos)
return
}
if func.params.len > 1 {
c.error('function needs exactly 1 argument', call_expr.pos)
} else if is_map &&
(func.return_type == table.void_type || func.params[0].typ != elem_typ) {
c.error('type mismatch, should use `fn(a $elem_sym.name) T {...}`',
arg_expr.pos)
} else if !is_map &&
(func.return_type != table.bool_type || func.params[0].typ != elem_typ) {
c.error('type mismatch, should use `fn(a $elem_sym.name) bool {...}`',
arg_expr.pos)
}
}
}
else {}
}
}
pub fn (mut c Checker) call_method(mut call_expr ast.CallExpr) table.Type {
left_type := c.expr(call_expr.left)
is_generic := left_type.has_flag(.generic)
call_expr.left_type = left_type
// Set default values for .return_type & .receiver_type too,
// or there will be hard to diagnose 0 type panics in cgen.
call_expr.return_type = left_type
call_expr.receiver_type = left_type
left_type_sym := c.table.get_type_symbol(c.unwrap_generic(left_type))
method_name := call_expr.name
mut unknown_method_msg := 'unknown method: `${left_type_sym.name}.$method_name`'
if left_type.has_flag(.optional) {
c.error('optional type cannot be called directly', call_expr.left.position())
return table.void_type
}
if left_type_sym.kind == .sum_type && method_name == 'type_name' {
return table.string_type
}
if call_expr.generic_type.has_flag(.generic) {
if c.mod != '' {
// Need to prepend the module when adding a generic type to a function
// `fn_gen_types['mymod.myfn'] == ['string', 'int']`
c.table.register_fn_gen_type(c.mod + '.' + call_expr.name, c.cur_generic_type)
} else {
c.table.register_fn_gen_type(call_expr.name, c.cur_generic_type)
}
// call_expr.generic_type = c.unwrap_generic(call_expr.generic_type)
}
// TODO: remove this for actual methods, use only for compiler magic
// FIXME: Argument count != 1 will break these
if left_type_sym.kind == .array && method_name in array_builtin_methods {
mut elem_typ := table.void_type
is_filter_map := method_name in ['filter', 'map']
is_sort := method_name == 'sort'
if is_filter_map || is_sort {
array_info := left_type_sym.info as table.Array
if is_filter_map {
// position of `it` doesn't matter
scope_register_it(mut call_expr.scope, call_expr.pos, array_info.elem_type)
} else if is_sort {
c.fail_if_immutable(call_expr.left)
// position of `a` and `b` doesn't matter, they're the same
scope_register_ab(mut call_expr.scope, call_expr.pos, array_info.elem_type)
// Verify `.sort(a < b)`
if call_expr.args.len > 0 {
if call_expr.args[0].expr !is ast.InfixExpr {
c.error('`.sort()` requires a `<` or `>` comparison as the first and only argument' +
'\ne.g. `users.sort(a.id < b.id)`', call_expr.pos)
}
}
}
elem_typ = array_info.elem_type
}
// map/filter are supposed to have 1 arg only
mut arg_type := left_type
for arg in call_expr.args {
arg_type = c.expr(arg.expr)
}
if method_name == 'map' {
// check fn
c.check_map_and_filter(true, elem_typ, call_expr)
arg_sym := c.table.get_type_symbol(arg_type)
// FIXME: match expr failed for now
mut ret_type := 0
match mut arg_sym.info {
table.FnType { ret_type = arg_sym.info.func.return_type }
else { ret_type = arg_type }
}
call_expr.return_type = c.table.find_or_register_array(ret_type, 1)
} else if method_name == 'filter' {
// check fn
c.check_map_and_filter(false, elem_typ, call_expr)
} else if method_name == 'clone' {
// need to return `array_xxx` instead of `array`
// in ['clone', 'str'] {
call_expr.receiver_type = left_type.to_ptr()
// call_expr.return_type = call_expr.receiver_type
} else if method_name == 'sort' {
call_expr.return_type = table.void_type
} else if method_name == 'contains' {
call_expr.return_type = table.bool_type
} else if method_name == 'index' {
call_expr.return_type = table.int_type
}
return call_expr.return_type
} else if left_type_sym.kind == .map && method_name in ['clone', 'keys'] {
mut ret_type := table.void_type
match method_name {
'clone' {
ret_type = left_type
}
'keys' {
info := left_type_sym.info as table.Map
typ := c.table.find_or_register_array(info.key_type, 1)
ret_type = table.Type(typ)
}
else {}
}
call_expr.receiver_type = left_type.to_ptr()
call_expr.return_type = ret_type
return call_expr.return_type
} else if left_type_sym.kind == .array && method_name in ['first', 'last', 'pop'] {
info := left_type_sym.info as table.Array
call_expr.return_type = info.elem_type
if method_name == 'pop' {
call_expr.receiver_type = left_type.to_ptr()
} else {
call_expr.receiver_type = left_type
}
return call_expr.return_type
} else if left_type_sym.kind == .array && method_name in ['insert', 'prepend'] {
info := left_type_sym.info as table.Array
arg_expr := if method_name == 'insert' {
call_expr.args[1].expr
} else {
call_expr.args[0].expr
}
arg_type := c.expr(arg_expr)
arg_sym := c.table.get_type_symbol(arg_type)
if !c.check_types(arg_type, info.elem_type) && !c.check_types(left_type, arg_type) {
c.error('cannot $method_name `$arg_sym.name` to `$left_type_sym.name`', arg_expr.position())
}
}
mut method := table.Fn{}
mut has_method := false
mut is_method_from_embed := false
if m := c.table.type_find_method(left_type_sym, method_name) {
method = m
has_method = true
} else {
// can this logic be moved to table.type_find_method() so it can be used from anywhere
if left_type_sym.info is table.Struct {
mut found_methods := []table.Fn{}
mut embed_of_found_methods := []table.Type{}
for embed in left_type_sym.info.embeds {
embed_sym := c.table.get_type_symbol(embed)
if m := c.table.type_find_method(embed_sym, method_name) {
found_methods << m
embed_of_found_methods << embed
}
}
if found_methods.len == 1 {
method = found_methods[0]
has_method = true
is_method_from_embed = true
call_expr.from_embed_type = embed_of_found_methods[0]
} else if found_methods.len > 1 {
c.error('ambiguous method `$method_name`', call_expr.pos)
}
}
if left_type_sym.kind == .aggregate {
// the error message contains the problematic type
unknown_method_msg = err
}
}
if has_method {
if !method.is_pub && !c.is_builtin_mod && !c.pref.is_test && left_type_sym.mod != c.mod &&
left_type_sym.mod != '' { // method.mod != c.mod {
// If a private method is called outside of the module
// its receiver type is defined in, show an error.
// println('warn $method_name lef.mod=$left_type_sym.mod c.mod=$c.mod')
c.error('method `${left_type_sym.name}.$method_name` is private', call_expr.pos)
}
if method.params[0].is_mut {
c.fail_if_immutable(call_expr.left)
// call_expr.is_mut = true
}
if method.return_type == table.void_type &&
method.ctdefine.len > 0 && method.ctdefine !in c.pref.compile_defines {
call_expr.should_be_skipped = true
}
nr_args := if method.params.len == 0 { 0 } else { method.params.len - 1 }
min_required_args := method.params.len - if method.is_variadic && method.params.len >
1 { 2 } else { 1 }
if call_expr.args.len < min_required_args {
c.error('expected $min_required_args arguments, but got $call_expr.args.len',
call_expr.pos)
} else if !method.is_variadic && call_expr.args.len > nr_args {
unexpected_arguments := call_expr.args[min_required_args..]
unexpected_arguments_pos := unexpected_arguments[0].pos.extend(unexpected_arguments.last().pos)
c.error('expected $nr_args arguments, but got $call_expr.args.len', unexpected_arguments_pos)
return method.return_type
}
// if method_name == 'clone' {
// println('CLONE nr args=$method.args.len')
// }
// call_expr.args << method.args[0].typ
// call_expr.exp_arg_types << method.args[0].typ
for i, arg in call_expr.args {
exp_arg_typ := if method.is_variadic && i >= method.params.len - 1 { method.params[method.params.len -
1].typ } else { method.params[i + 1].typ }
exp_arg_sym := c.table.get_type_symbol(exp_arg_typ)
c.expected_type = exp_arg_typ
got_arg_typ := c.expr(arg.expr)
call_expr.args[i].typ = got_arg_typ
if method.is_variadic && got_arg_typ.has_flag(.variadic) && call_expr.args.len - 1 > i {
c.error('when forwarding a varg variable, it must be the final argument',
call_expr.pos)
}
if exp_arg_sym.kind == .interface_ {
c.type_implements(got_arg_typ, exp_arg_typ, arg.expr.position())
continue
}
if method.is_generic {
continue
}
c.check_expected_call_arg(got_arg_typ, exp_arg_typ) or {
// str method, allow type with str method if fn arg is string
// Passing an int or a string array produces a c error here
// Deleting this condition results in propper V error messages
// if arg_typ_sym.kind == .string && typ_sym.has_method('str') {
// continue
// }
if got_arg_typ != table.void_type {
c.error('$err in argument ${i + 1} to `${left_type_sym.name}.$method_name`',
call_expr.pos)
}
}
param := if method.is_variadic && i >= method.params.len - 1 { method.params[method.params.len -
1] } else { method.params[i + 1] }
if arg.is_mut {
c.fail_if_immutable(arg.expr)
if !param.is_mut {
tok := arg.share.str()
c.error('`$call_expr.name` parameter `$param.name` is not `$tok`, `$tok` is not needed`',
arg.expr.position())
} else if param.typ.share() != arg.share {
c.error('wrong shared type', arg.expr.position())
}
} else {
if param.is_mut && (!arg.is_mut || param.typ.share() != arg.share) {
tok := arg.share.str()
c.warn('`$call_expr.name` parameter `$param.name` is `$tok`, you need to provide `$tok` e.g. `$tok arg${i +
1}`', arg.expr.position())
}
}
}
if method.is_unsafe && !c.inside_unsafe {
c.warn('method `${left_type_sym.name}.$method_name` must be called from an `unsafe` block',
call_expr.pos)
}
// TODO: typ optimize.. this node can get processed more than once
if call_expr.expected_arg_types.len == 0 {
for i in 1 .. method.params.len {
call_expr.expected_arg_types << method.params[i].typ
}
}
if is_method_from_embed {
call_expr.receiver_type = call_expr.from_embed_type.derive(method.params[0].typ)
} else if is_generic {
// We need the receiver to be T in cgen.
// TODO: cant we just set all these to the concrete type in checker? then no need in gen
call_expr.receiver_type = left_type.derive(method.params[0].typ).set_flag(.generic)
} else {
call_expr.receiver_type = method.params[0].typ
}
call_expr.return_type = method.return_type
if method.is_generic && call_expr.generic_type == table.void_type {
// no type arguments given in call, attempt implicit instantiation
c.infer_fn_types(method, mut call_expr)
}
if call_expr.generic_type != table.void_type && method.return_type != 0 { // table.t_type {
// Handle `foo<T>() T` => `foo<int>() int` => return int
return_sym := c.table.get_type_symbol(method.return_type)
if return_sym.name == 'T' {
mut typ := call_expr.generic_type
typ = typ.set_nr_muls(method.return_type.nr_muls())
if method.return_type.has_flag(.optional) {
typ = typ.set_flag(.optional)
}
call_expr.return_type = typ
return typ
} else if return_sym.kind == .array {
elem_info := return_sym.info as table.Array
elem_sym := c.table.get_type_symbol(elem_info.elem_type)
if elem_sym.name == 'T' {
idx := c.table.find_or_register_array(call_expr.generic_type, 1)
return table.new_type(idx)
}
}
}
if call_expr.generic_type.is_full() && !method.is_generic {
c.error('a non generic function called like a generic one', call_expr.generic_list_pos)
}
if method.is_generic {
return call_expr.return_type
}
return method.return_type
}
// TODO: str methods
if method_name == 'str' {
if left_type_sym.kind == .interface_ {
iname := left_type_sym.name
c.error('interface `$iname` does not have a .str() method. Use typeof() instead',
call_expr.pos)
}
call_expr.receiver_type = left_type
call_expr.return_type = table.string_type
if call_expr.args.len > 0 {
c.error('.str() method calls should have no arguments', call_expr.pos)
}
return table.string_type
}
// call struct field fn type
// TODO: can we use SelectorExpr for all? this dosent really belong here
if field := c.table.struct_find_field(left_type_sym, method_name) {
field_type_sym := c.table.get_type_symbol(field.typ)
if field_type_sym.kind == .function {
// call_expr.is_method = false
call_expr.is_field = true
info := field_type_sym.info as table.FnType
call_expr.return_type = info.func.return_type
// TODO: check args (do it once for all of the above)
for arg in call_expr.args {
c.expr(arg.expr)
}
return info.func.return_type
}
}
if left_type != table.void_type {
suggestion := util.new_suggestion(method_name, left_type_sym.methods.map(it.name))
c.error(suggestion.say(unknown_method_msg), call_expr.pos)
}
return table.void_type
}
pub fn (mut c Checker) call_fn(mut call_expr ast.CallExpr) table.Type {
fn_name := call_expr.name
if fn_name == 'main' {
c.error('the `main` function cannot be called in the program', call_expr.pos)
}
if fn_name == 'typeof' {
// TODO: impl typeof properly (probably not going to be a fn call)
return table.string_type
}
if call_expr.generic_type.has_flag(.generic) {
if c.mod != '' {
// Need to prepend the module when adding a generic type to a function
// `fn_gen_types['mymod.myfn'] == ['string', 'int']`
c.table.register_fn_gen_type(c.mod + '.' + fn_name, c.cur_generic_type)
} else {
c.table.register_fn_gen_type(fn_name, c.cur_generic_type)
}
// call_expr.generic_type = c.unwrap_generic(call_expr.generic_type)
}
// if c.fileis('json_test.v') {
// println(fn_name)
// }
if fn_name == 'json.encode' {
} else if fn_name == 'json.decode' && call_expr.args.len > 0 {
expr := call_expr.args[0].expr
if expr !is ast.Type {
typ := expr.type_name()
c.error('json.decode: first argument needs to be a type, got `$typ`', call_expr.pos)
return table.void_type
}
c.expected_type = table.string_type
call_expr.args[1].typ = c.expr(call_expr.args[1].expr)
if call_expr.args[1].typ != table.string_type {
c.error('json.decode: second argument needs to be a string', call_expr.pos)
}
typ := expr as ast.Type
ret_type := typ.typ.set_flag(.optional)
call_expr.return_type = ret_type
return ret_type
}
// look for function in format `mod.fn` or `fn` (builtin)
mut f := table.Fn{}
mut found := false
mut found_in_args := false
// anon fn direct call
if mut call_expr.left is ast.AnonFn {
// it was set to anon for checker errors, clear for gen
call_expr.name = ''
c.expr(call_expr.left)
anon_fn_sym := c.table.get_type_symbol(call_expr.left.typ)
f = (anon_fn_sym.info as table.FnType).func
found = true
}
// try prefix with current module as it would have never gotten prefixed
if !found && !fn_name.contains('.') && call_expr.mod != 'builtin' {
name_prefixed := '${call_expr.mod}.$fn_name'
if f1 := c.table.find_fn(name_prefixed) {
call_expr.name = name_prefixed
found = true
f = f1
}
}
if !found && call_expr.left is ast.IndexExpr {
c.expr(call_expr.left)
expr := call_expr.left as ast.IndexExpr
sym := c.table.get_type_symbol(expr.left_type)
if sym.kind == .array {
info := sym.info as table.Array
elem_typ := c.table.get_type_symbol(info.elem_type)
if elem_typ.info is table.FnType {
return elem_typ.info.func.return_type
}
}
found = true
return table.string_type
}
// already prefixed (mod.fn) or C/builtin/main
if !found {
if f1 := c.table.find_fn(fn_name) {
found = true
f = f1
}
}
if c.pref.is_script && !found {
os_name := 'os.$fn_name'
if f1 := c.table.find_fn(os_name) {
if f1.is_generic && call_expr.generic_type != table.void_type {
c.table.fn_gen_types[os_name] = c.table.fn_gen_types['${call_expr.mod}.$call_expr.name']
}
call_expr.name = os_name
found = true
f = f1
}
}
// check for arg (var) of fn type
if !found {
if v := call_expr.scope.find_var(fn_name) {
if v.typ != 0 {
vts := c.table.get_type_symbol(v.typ)
if vts.kind == .function {
info := vts.info as table.FnType
f = info.func
found = true
found_in_args = true
}
}
}
}
if !found {
c.error('unknown function: $fn_name', call_expr.pos)
return table.void_type
}
if !found_in_args {
if _ := call_expr.scope.find_var(fn_name) {
c.error('ambiguous call to: `$fn_name`, may refer to fn `$fn_name` or variable `$fn_name`',
call_expr.pos)
}
}
if !f.is_pub && f.language == .v && f.name.len > 0 && f.mod.len > 0 && f.mod != c.mod {
c.error('function `$f.name` is private, so you can not import it in module `$c.mod`',
call_expr.pos)
}
if f.is_deprecated {
c.warn('function `$f.name` has been deprecated', call_expr.pos)
}
if f.is_unsafe && !c.inside_unsafe && f.language == .c && f.name[2] in [`m`, `s`] &&
f.mod == 'builtin' {
// builtin C.m*, C.s* only - temp
c.warn('function `$f.name` must be called from an `unsafe` block', call_expr.pos)
}
if f.is_generic && f.return_type.has_flag(.generic) {
rts := c.table.get_type_symbol(f.return_type)
if rts.kind == .struct_ {
rts_info := rts.info as table.Struct
if rts_info.generic_types.len > 0 {
// TODO: multiple generic types
// for gt in rts_info.generic_types {
// gtss := c.table.get_type_symbol(gt)
// }
gts := c.table.get_type_symbol(call_expr.generic_type)
nrt := '$rts.name<$gts.name>'
idx := c.table.type_idxs[nrt]
if idx == 0 {
c.error('unknown type: $nrt', call_expr.pos)
}
call_expr.return_type = table.new_type(idx).derive(f.return_type)
}
}
} else {
call_expr.return_type = f.return_type
}
if f.return_type == table.void_type &&
f.ctdefine.len > 0 && f.ctdefine !in c.pref.compile_defines {
call_expr.should_be_skipped = true
}
if f.language != .v || call_expr.language != .v {
for arg in call_expr.args {
c.expr(arg.expr)
}
return f.return_type
}
min_required_args := if f.is_variadic { f.params.len - 1 } else { f.params.len }
if call_expr.args.len < min_required_args {
c.error('expected $min_required_args arguments, but got $call_expr.args.len',
call_expr.pos)
} else if !f.is_variadic && call_expr.args.len > f.params.len {
unexpected_arguments := call_expr.args[min_required_args..]
unexpected_arguments_pos := unexpected_arguments[0].pos.extend(unexpected_arguments.last().pos)
c.error('expected $min_required_args arguments, but got $call_expr.args.len',
unexpected_arguments_pos)
return f.return_type
}
// println / eprintln can print anything
if fn_name in ['println', 'print', 'eprintln', 'eprint'] && call_expr.args.len > 0 {
c.expected_type = table.string_type
call_expr.args[0].typ = c.expr(call_expr.args[0].expr)
/*
// TODO: optimize `struct T{} fn (t &T) str() string {return 'abc'} mut a := []&T{} a << &T{} println(a[0])`
// It currently generates:
// `println(T_str_no_ptr(*(*(T**)array_get(a, 0))));`
// ... which works, but could be just:
// `println(T_str(*(T**)array_get(a, 0)));`
prexpr := call_expr.args[0].expr
prtyp := call_expr.args[0].typ
prtyp_sym := c.table.get_type_symbol(prtyp)
prtyp_is_ptr := prtyp.is_ptr()
prhas_str, prexpects_ptr, prnr_args := prtyp_sym.str_method_info()
eprintln('>>> println hack typ: ${prtyp} | sym.name: ${prtyp_sym.name} | is_ptr: $prtyp_is_ptr | has_str: $prhas_str | expects_ptr: $prexpects_ptr | nr_args: $prnr_args | expr: ${prexpr.str()} ')
*/
return f.return_type
}
// TODO: typ optimize.. this node can get processed more than once
if call_expr.expected_arg_types.len == 0 {
for param in f.params {
call_expr.expected_arg_types << param.typ
}
}
for i, call_arg in call_expr.args {
arg := if f.is_variadic && i >= f.params.len - 1 {
f.params[f.params.len - 1]
} else {
f.params[i]
}
c.expected_type = arg.typ
typ := c.expr(call_arg.expr)
call_expr.args[i].typ = typ
typ_sym := c.table.get_type_symbol(typ)
arg_typ_sym := c.table.get_type_symbol(arg.typ)
if f.is_variadic && typ.has_flag(.variadic) && call_expr.args.len - 1 > i {
c.error('when forwarding a varg variable, it must be the final argument',
call_expr.pos)
}
if call_arg.is_mut {
c.fail_if_immutable(call_arg.expr)
if !arg.is_mut {
tok := call_arg.share.str()
c.error('`$call_expr.name` parameter `$arg.name` is not `$tok`, `$tok` is not needed`',
call_arg.expr.position())
} else if arg.typ.share() != call_arg.share {
c.error('wrong shared type', call_arg.expr.position())
}
} else {
if arg.is_mut && (!call_arg.is_mut || arg.typ.share() != call_arg.share) {
tok := call_arg.share.str()
c.warn('`$call_expr.name` parameter `$arg.name` is `$tok`, you need to provide `$tok` e.g. `$tok arg${i +
1}`', call_arg.expr.position())
}
}
// Handle expected interface
if arg_typ_sym.kind == .interface_ {
c.type_implements(typ, arg.typ, call_arg.expr.position())
continue
}
c.check_expected_call_arg(typ, arg.typ) or {
// str method, allow type with str method if fn arg is string
// Passing an int or a string array produces a c error here
// Deleting this condition results in propper V error messages
// if arg_typ_sym.kind == .string && typ_sym.has_method('str') {
// continue
// }
if typ_sym.kind == .void && arg_typ_sym.kind == .string {
continue
}
if f.is_generic {
continue
}
c.error('$err in argument ${i + 1} to `$fn_name`', call_arg.pos)
}
}
if f.is_generic && call_expr.generic_type == table.void_type {
// no type arguments given in call, attempt implicit instantiation
c.infer_fn_types(f, mut call_expr)
}
if call_expr.generic_type != table.void_type && f.return_type != 0 { // table.t_type {
// Handle `foo<T>() T` => `foo<int>() int` => return int
return_sym := c.table.get_type_symbol(f.return_type)
if return_sym.name == 'T' {
mut typ := call_expr.generic_type
typ = typ.set_nr_muls(f.return_type.nr_muls())
if f.return_type.has_flag(.optional) {
typ = typ.set_flag(.optional)
}
call_expr.return_type = typ
return typ
} else if return_sym.kind == .array && return_sym.name.contains('T') {
mut info := return_sym.info as table.Array
mut sym := c.table.get_type_symbol(info.elem_type)
mut dims := 1
for {
if sym.kind == .array {
info = sym.info as table.Array
sym = c.table.get_type_symbol(info.elem_type)
dims++
} else {
break
}
}
idx := c.table.find_or_register_array(call_expr.generic_type, dims)
typ := table.new_type(idx)
call_expr.return_type = typ
return typ
}
}
if call_expr.generic_type.is_full() && !f.is_generic {
c.error('a non generic function called like a generic one', call_expr.generic_list_pos)
}
if f.is_generic {
return call_expr.return_type
}
return f.return_type
}
fn (mut c Checker) type_implements(typ table.Type, inter_typ table.Type, pos token.Position) bool {
$if debug_interface_type_implements ? {
eprintln('> type_implements typ: $typ.debug() | inter_typ: $inter_typ.debug()')
}
typ_sym := c.table.get_type_symbol(typ)
mut inter_sym := c.table.get_type_symbol(inter_typ)
styp := c.table.type_to_str(typ)
for imethod in inter_sym.methods {
if method := typ_sym.find_method(imethod.name) {
if !imethod.is_same_method_as(method) {
sig := c.table.fn_signature(imethod, skip_receiver: true)
c.error('`$styp` incorrectly implements method `$imethod.name` of interface `$inter_sym.name`, expected `$sig`',
pos)
return false
}
continue
}
c.error("`$styp` doesn't implement method `$imethod.name` of interface `$inter_sym.name`",
pos)
}
if mut inter_sym.info is table.Interface {
if typ !in inter_sym.info.types && typ_sym.kind != .interface_ {
inter_sym.info.types << typ
}
}
return true
}
// return the actual type of the expression, once the optional is handled
pub fn (mut c Checker) check_expr_opt_call(expr ast.Expr, ret_type table.Type) table.Type {
if expr is ast.CallExpr {
if expr.return_type.has_flag(.optional) {
if expr.or_block.kind == .absent {
if ret_type != table.void_type {
c.error('${expr.name}() returns an option but is missing an `or {}` block',
expr.pos)
}
} else {
c.check_or_expr(expr.or_block, ret_type, expr.return_type.clear_flag(.optional))
}
// remove optional flag
// return ret_type.clear_flag(.optional)
// TODO: currently unwrapped in assign, would need to refactor assign to unwrap here
return ret_type
} else if expr.or_block.kind == .block {
c.error('unexpected `or` block, the function `$expr.name` does not return an optional',
expr.or_block.pos)
} else if expr.or_block.kind == .propagate {
c.error('unexpected `?`, the function `$expr.name` does not return an optional',
expr.or_block.pos)
}
}
return ret_type
}
pub fn (mut c Checker) check_or_expr(or_expr ast.OrExpr, ret_type table.Type, expr_return_type table.Type) {
if or_expr.kind == .propagate {
if !c.cur_fn.return_type.has_flag(.optional) && c.cur_fn.name != 'main.main' {
c.error('to propagate the optional call, `$c.cur_fn.name` must return an optional',
or_expr.pos)
}
return
}
stmts_len := or_expr.stmts.len
if stmts_len == 0 {
if ret_type != table.void_type {
// x := f() or {}
c.error('assignment requires a non empty `or {}` block', or_expr.pos)
return
}
// allow `f() or {}`
return
}
last_stmt := or_expr.stmts[stmts_len - 1]
if ret_type != table.void_type {
match last_stmt {
ast.ExprStmt {
c.expected_type = ret_type
c.expected_or_type = ret_type.clear_flag(.optional)
last_stmt_typ := c.expr(last_stmt.expr)
c.expected_or_type = table.void_type
type_fits := c.check_types(last_stmt_typ, ret_type) && last_stmt_typ.nr_muls() ==
ret_type.nr_muls()
is_panic_or_exit := is_expr_panic_or_exit(last_stmt.expr)
if type_fits || is_panic_or_exit {
return
}
expected_type_name := c.table.type_to_str(ret_type.clear_flag(.optional))
if last_stmt.typ == table.void_type {
c.error('`or` block must provide a default value of type `$expected_type_name`, or return/exit/continue/break/panic',
last_stmt.pos)
} else {
type_name := c.table.type_to_str(last_stmt_typ)
c.error('wrong return type `$type_name` in the `or {}` block, expected `$expected_type_name`',
last_stmt.pos)
}
return
}
ast.BranchStmt {
if last_stmt.kind !in [.key_continue, .key_break] {
c.error('only break/continue is allowed as a branch statement in the end of an `or {}` block',
last_stmt.pos)
return
}
}
ast.Return {}
else {
expected_type_name := c.table.type_to_str(ret_type.clear_flag(.optional))
c.error('last statement in the `or {}` block should be an expression of type `$expected_type_name` or exit parent scope',
or_expr.pos)
return
}
}
} else {
match last_stmt {
ast.ExprStmt {
if last_stmt.typ == table.void_type {
return
}
if is_expr_panic_or_exit(last_stmt.expr) {
return
}
if c.check_types(last_stmt.typ, expr_return_type) {
return
}
// opt_returning_string() or { ... 123 }
type_name := c.table.type_to_str(last_stmt.typ)
expr_return_type_name := c.table.type_to_str(expr_return_type)
c.error('the default expression type in the `or` block should be `$expr_return_type_name`, instead you gave a value of type `$type_name`',
last_stmt.expr.position())
}
else {}
}
}
}
fn is_expr_panic_or_exit(expr ast.Expr) bool {
match expr {
ast.CallExpr { return expr.name in ['panic', 'exit'] }
else { return false }
}
}
pub fn (mut c Checker) selector_expr(mut selector_expr ast.SelectorExpr) table.Type {
prevent_sum_type_unwrapping_once := c.prevent_sum_type_unwrapping_once
c.prevent_sum_type_unwrapping_once = false
// T.name, typeof(expr).name
mut name_type := 0
match mut selector_expr.expr {
ast.Ident {
if selector_expr.expr.name == 'T' {
name_type = table.Type(c.table.find_type_idx('T')).set_flag(.generic)
}
}
// Note: in future typeof() should be a type known at compile-time
// sum types should not be handled dynamically
ast.TypeOf {
name_type = c.expr(selector_expr.expr.expr)
}
else {}
}
if name_type > 0 {
if selector_expr.field_name != 'name' {
c.error('invalid field `.$selector_expr.field_name` for type `$selector_expr.expr`',
selector_expr.pos)
}
selector_expr.name_type = name_type
return table.string_type
}
typ := c.expr(selector_expr.expr)
if typ == table.void_type_idx {
c.error('unknown selector expression', selector_expr.pos)
return table.void_type
}
selector_expr.expr_type = typ
field_name := selector_expr.field_name
utyp := c.unwrap_generic(typ)
sym := c.table.get_type_symbol(utyp)
if typ.has_flag(.variadic) || sym.kind == .array_fixed || sym.kind == .chan {
if field_name == 'len' || (sym.kind == .chan && field_name == 'cap') {
selector_expr.typ = table.int_type
return table.int_type
}
}
mut unknown_field_msg := 'type `$sym.name` has no field or method `$field_name`'
mut has_field := false
mut field := table.Field{}
if field_name.len > 0 && field_name[0].is_capital() && sym.info is table.Struct {
// x.Foo.y => access the embedded struct
sym_info := sym.info as table.Struct
for embed in sym_info.embeds {
embed_sym := c.table.get_type_symbol(embed)
if embed_sym.embed_name() == field_name {
selector_expr.typ = embed
return embed
}
}
} else {
if f := c.table.struct_find_field(sym, field_name) {
has_field = true
field = f
} else {
if sym.info is table.Struct {
mut found_fields := []table.Field{}
mut embed_of_found_fields := []table.Type{}
for embed in sym.info.embeds {
embed_sym := c.table.get_type_symbol(embed)
if f := c.table.struct_find_field(embed_sym, field_name) {
found_fields << f
embed_of_found_fields << embed
}
}
if found_fields.len == 1 {
field = found_fields[0]
has_field = true
selector_expr.from_embed_type = embed_of_found_fields[0]
} else if found_fields.len > 1 {
c.error('ambiguous field `$field_name`', selector_expr.pos)
}
}
if sym.kind == .aggregate {
unknown_field_msg = err
}
}
}
if has_field {
if sym.mod != c.mod && !field.is_pub && sym.language != .c {
c.error('field `${sym.name}.$field_name` is not public', selector_expr.pos)
}
field_sym := c.table.get_type_symbol(field.typ)
if field_sym.kind == .sum_type {
if !prevent_sum_type_unwrapping_once {
if scope_field := selector_expr.scope.find_struct_field(utyp, field_name) {
return scope_field.sum_type_casts.last()
}
}
}
selector_expr.typ = field.typ
return field.typ
}
if sym.kind !in [.struct_, .aggregate] {
if sym.kind != .placeholder {
c.error('`$sym.name` is not a struct', selector_expr.pos)
}
} else {
if sym.info is table.Struct {
suggestion := util.new_suggestion(field_name, sym.info.fields.map(it.name))
c.error(suggestion.say(unknown_field_msg), selector_expr.pos)
}
c.error(unknown_field_msg, selector_expr.pos)
}
return table.void_type
}
// TODO: non deferred
pub fn (mut c Checker) return_stmt(mut return_stmt ast.Return) {
c.expected_type = c.cur_fn.return_type
expected_type := c.unwrap_generic(c.expected_type)
expected_type_sym := c.table.get_type_symbol(expected_type)
if return_stmt.exprs.len > 0 && c.cur_fn.return_type == table.void_type {
c.error('too many arguments to return, current function does not return anything',
return_stmt.pos)
return
} else if return_stmt.exprs.len == 0 && !(c.expected_type == table.void_type ||
expected_type_sym.kind == .void) {
c.error('too few arguments to return', return_stmt.pos)
return
}
if return_stmt.exprs.len == 0 {
return
}
exp_is_optional := expected_type.has_flag(.optional)
mut expected_types := [expected_type]
if expected_type_sym.kind == .multi_return {
mr_info := expected_type_sym.info as table.MultiReturn
expected_types = mr_info.types
}
mut got_types := []table.Type{}
for expr in return_stmt.exprs {
typ := c.expr(expr)
// Unpack multi return types
sym := c.table.get_type_symbol(typ)
if sym.kind == .multi_return {
for t in sym.mr_info().types {
got_types << t
}
} else {
got_types << typ
}
}
return_stmt.types = got_types
// allow `none` & `error (Option)` return types for function that returns optional
if exp_is_optional && got_types[0].idx() in [table.none_type_idx, c.table.type_idxs['Option']] {
return
}
if expected_types.len > 0 && expected_types.len != got_types.len {
c.error('wrong number of return arguments', return_stmt.pos)
return
}
for i, exp_type in expected_types {
got_typ := c.unwrap_generic(got_types[i])
if got_typ.has_flag(.optional) &&
(!exp_type.has_flag(.optional) || c.table.type_to_str(got_typ) != c.table.type_to_str(exp_type)) {
pos := return_stmt.exprs[i].position()
c.error('cannot use `${c.table.type_to_str(got_typ)}` as type `${c.table.type_to_str(exp_type)}` in return argument',
pos)
}
if !c.check_types(got_typ, exp_type) {
got_typ_sym := c.table.get_type_symbol(got_typ)
mut exp_typ_sym := c.table.get_type_symbol(exp_type)
pos := return_stmt.exprs[i].position()
if exp_typ_sym.kind == .interface_ {
c.type_implements(got_typ, exp_type, return_stmt.pos)
continue
}
c.error('cannot use `$got_typ_sym.name` as type `$exp_typ_sym.name` in return argument',
pos)
}
if (got_typ.is_ptr() || got_typ.is_pointer()) &&
(!exp_type.is_ptr() && !exp_type.is_pointer()) {
pos := return_stmt.exprs[i].position()
c.error('fn `$c.cur_fn.name` expects you to return a non reference type `${c.table.type_to_str(exp_type)}`, but you are returning `${c.table.type_to_str(got_typ)}` instead',
pos)
}
if (exp_type.is_ptr() || exp_type.is_pointer()) &&
(!got_typ.is_ptr() && !got_typ.is_pointer()) && got_typ != table.any_int_type {
pos := return_stmt.exprs[i].position()
c.error('fn `$c.cur_fn.name` expects you to return a reference type `${c.table.type_to_str(exp_type)}`, but you are returning `${c.table.type_to_str(got_typ)}` instead',
pos)
}
}
if exp_is_optional && return_stmt.exprs.len > 0 {
expr0 := return_stmt.exprs[0]
if expr0 is ast.CallExpr {
if expr0.or_block.kind == .propagate {
c.error('`?` is not needed, use `return ${expr0.name}()`', expr0.pos)
}
}
}
}
pub fn (mut c Checker) const_decl(mut node ast.ConstDecl) {
mut field_names := []string{}
mut field_order := []int{}
for i, field in node.fields {
// TODO Check const name once the syntax is decided
if field.name in c.const_names {
c.error('duplicate const `$field.name`', field.pos)
}
c.const_names << field.name
field_names << field.name
field_order << i
}
mut needs_order := false
mut done_fields := []int{}
for i, field in node.fields {
c.const_decl = field.name
c.const_deps << field.name
typ := c.expr(field.expr)
node.fields[i].typ = c.table.mktyp(typ)
for cd in c.const_deps {
for j, f in node.fields {
if j != i && cd in field_names && cd == f.name && j !in done_fields {
needs_order = true
x := field_order[j]
field_order[j] = field_order[i]
field_order[i] = x
break
}
}
}
done_fields << i
c.const_deps = []
}
if needs_order {
mut ordered_fields := []ast.ConstField{}
for order in field_order {
ordered_fields << node.fields[order]
}
node.fields = ordered_fields
}
}
pub fn (mut c Checker) enum_decl(decl ast.EnumDecl) {
c.check_valid_pascal_case(decl.name, 'enum name', decl.pos)
mut seen := []i64{}
if decl.fields.len == 0 {
c.error('enum cannot be empty', decl.pos)
}
for i, field in decl.fields {
if !c.pref.experimental && util.contains_capital(field.name) {
// TODO C2V uses hundreds of enums with capitals, remove -experimental check once it's handled
c.error('field name `$field.name` cannot contain uppercase letters, use snake_case instead',
field.pos)
}
for j in 0 .. i {
if field.name == decl.fields[j].name {
c.error('field name `$field.name` duplicate', field.pos)
}
}
if field.has_expr {
match field.expr {
ast.IntegerLiteral {
val := field.expr.val.i64()
if val < int_min || val > int_max {
c.error('enum value `$val` overflows int', field.expr.pos)
} else if !decl.is_multi_allowed && i64(val) in seen {
c.error('enum value `$val` already exists', field.expr.pos)
}
seen << i64(val)
}
ast.PrefixExpr {}
else {
if field.expr is ast.Ident {
if field.expr.language == .c {
continue
}
}
mut pos := field.expr.position()
if pos.pos == 0 {
pos = field.pos
}
c.error('default value for enum has to be an integer', pos)
}
}
} else {
if seen.len > 0 {
last := seen[seen.len - 1]
if last == int_max {
c.error('enum value overflows', field.pos)
}
seen << last + 1
} else {
seen << 0
}
}
}
}
pub fn (mut c Checker) assign_stmt(mut assign_stmt ast.AssignStmt) {
c.expected_type = table.none_type // TODO a hack to make `x := if ... work`
defer {
c.expected_type = table.void_type
}
right_first := assign_stmt.right[0]
mut right_len := assign_stmt.right.len
mut right_type0 := table.void_type
if right_first is ast.CallExpr || right_first is ast.IfExpr || right_first is ast.MatchExpr {
right_type0 = c.expr(right_first)
assign_stmt.right_types = [
c.check_expr_opt_call(right_first, right_type0),
]
right_type_sym0 := c.table.get_type_symbol(right_type0)
if right_type_sym0.kind == .multi_return {
assign_stmt.right_types = right_type_sym0.mr_info().types
right_len = assign_stmt.right_types.len
} else if right_type0 == table.void_type {
right_len = 0
}
}
if assign_stmt.left.len != right_len {
if right_first is ast.CallExpr {
c.error('assignment mismatch: $assign_stmt.left.len variable(s) but `${right_first.name}()` returns $right_len value(s)',
assign_stmt.pos)
} else {
c.error('assignment mismatch: $assign_stmt.left.len variable(s) $right_len value(s)',
assign_stmt.pos)
}
return
}
//
is_decl := assign_stmt.op == .decl_assign
for i, left in assign_stmt.left {
if left is ast.CallExpr {
c.error('cannot call function `${left.name}()` on the left side of an assignment',
left.pos)
}
is_blank_ident := left.is_blank_ident()
mut left_type := table.void_type
if !is_decl && !is_blank_ident {
if left is ast.Ident || left is ast.SelectorExpr {
c.prevent_sum_type_unwrapping_once = true
}
left_type = c.expr(left)
c.expected_type = c.unwrap_generic(left_type)
}
if assign_stmt.right_types.len < assign_stmt.left.len { // first type or multi return types added above
right_type := c.expr(assign_stmt.right[i])
if assign_stmt.right_types.len == i {
assign_stmt.right_types << c.check_expr_opt_call(assign_stmt.right[i], right_type)
}
}
right := if i < assign_stmt.right.len { assign_stmt.right[i] } else { assign_stmt.right[0] }
mut right_type := assign_stmt.right_types[i]
if is_decl {
left_type = c.table.mktyp(right_type)
if left_type == table.int_type {
mut expr := right
mut negative := false
if right is ast.PrefixExpr {
expr = right.right
if right.op == .minus {
negative = true
}
}
if mut expr is ast.IntegerLiteral {
mut is_large := false
if expr.val.len > 8 {
val := expr.val.i64()
if (!negative && val > int_max) || (negative && -val < int_min) {
is_large = true
}
}
if is_large {
c.error('overflow in implicit type `int`, use explicit type casting instead',
expr.pos)
}
}
}
// we are unwrapping here instead if check_expr_opt_call currently
if left_type.has_flag(.optional) {
left_type = left_type.clear_flag(.optional)
}
} else {
// Make sure the variable is mutable
c.fail_if_immutable(left)
// left_type = c.expr(left)
}
assign_stmt.left_types << left_type
match mut left {
ast.Ident {
if left.kind == .blank_ident {
left_type = right_type
assign_stmt.left_types[i] = right_type
if assign_stmt.op !in [.assign, .decl_assign] {
c.error('cannot modify blank `_` identifier', left.pos)
}
} else if left.info !is ast.IdentVar {
c.error('cannot assign to $left.kind `$left.name`', left.pos)
} else {
if is_decl {
c.check_valid_snake_case(left.name, 'variable name', left.pos)
}
mut ident_var_info := left.info as ast.IdentVar
if ident_var_info.share == .shared_t {
left_type = left_type.set_flag(.shared_f)
}
if ident_var_info.share == .atomic_t {
left_type = left_type.set_flag(.atomic_f)
}
assign_stmt.left_types[i] = left_type
ident_var_info.typ = left_type
left.info = ident_var_info
if left_type != 0 {
match mut left.obj {
ast.Var { left.obj.typ = left_type }
ast.GlobalField { left.obj.typ = left_type }
else {}
}
/*
if left.obj is ast.Var as v {
v.typ = left_type
} else if left.obj is ast.GlobalDecl as v {
v.typ = left_type
}
*/
}
}
}
ast.PrefixExpr {
// Do now allow `*x = y` outside `unsafe`
if left.op == .mul && !c.inside_unsafe {
c.error('modifying variables via dereferencing can only be done in `unsafe` blocks',
assign_stmt.pos)
}
if is_decl {
c.error('non-name on the left side of `:=`', left.pos)
}
}
else {
if is_decl {
c.error('non-name `$left` on left side of `:=`', left.position())
}
}
}
left_type_unwrapped := c.unwrap_generic(left_type)
right_type_unwrapped := c.unwrap_generic(right_type)
if right_type_unwrapped == 0 {
// right type was a generic `T`
continue
}
left_sym := c.table.get_type_symbol(left_type_unwrapped)
right_sym := c.table.get_type_symbol(right_type_unwrapped)
if c.pref.translated {
// TODO fix this in C2V instead, for example cast enums to int before using `|` on them.
// TODO replace all c.pref.translated checks with `$if !translated` for performance
continue
}
if left_sym.kind == .array && !c.inside_unsafe && assign_stmt.op in [.assign, .decl_assign] &&
right_sym.kind == .array &&
(left is ast.Ident && !left.is_blank_ident()) && right is ast.Ident {
// Do not allow `a = b`, only `a = b.clone()`
c.error('use `array2 = array1.clone()` instead of `array2 = array1` (or use `unsafe`)',
assign_stmt.pos)
}
left_is_ptr := left_type.is_ptr() || left_sym.is_pointer()
if left_is_ptr {
if !c.inside_unsafe && assign_stmt.op !in [.assign, .decl_assign] {
// ptr op=
c.warn('pointer arithmetic is only allowed in `unsafe` blocks', assign_stmt.pos)
}
right_is_ptr := right_type.is_ptr() || right_sym.is_pointer()
if !right_is_ptr && assign_stmt.op == .assign && right_type_unwrapped.is_number() {
c.error('cannot assign to `$left`: ' +
c.expected_msg(right_type_unwrapped, left_type_unwrapped), right.position())
}
if (right is ast.StructInit || !right_is_ptr) && !right_sym.is_number() {
left_name := c.table.type_to_str(left_type_unwrapped)
mut rtype := right_type_unwrapped
if rtype.is_ptr() {
rtype = rtype.deref()
}
right_name := c.table.type_to_str(rtype)
c.error('mismatched types `$left_name` and `$right_name`', assign_stmt.pos)
}
}
// Single side check
match assign_stmt.op {
.assign {} // No need to do single side check for =. But here put it first for speed.
.plus_assign, .minus_assign {
if left_type == table.string_type {
if assign_stmt.op != .plus_assign {
c.error('operator `$assign_stmt.op` not defined on left operand type `$left_sym.name`',
left.position())
}
if right_type != table.string_type {
c.error('invalid right operand: $left_sym.name $assign_stmt.op $right_sym.name',
right.position())
}
} else if !left_sym.is_number() && left_sym.kind !in [.byteptr, .charptr] {
c.error('operator `$assign_stmt.op` not defined on left operand type `$left_sym.name`',
left.position())
} else if !right_sym.is_number() && left_sym.kind !in [.byteptr, .charptr] {
c.error('invalid right operand: $left_sym.name $assign_stmt.op $right_sym.name',
right.position())
} else if right is ast.IntegerLiteral {
if right.val == '1' {
op := if assign_stmt.op == .plus_assign {
token.Kind.inc
} else {
token.Kind.dec
}
c.error('use `$op` instead of `$assign_stmt.op 1`', assign_stmt.pos)
}
}
}
.mult_assign, .div_assign {
if !left_sym.is_number() &&
!c.table.get_final_type_symbol(left_type_unwrapped).is_int() {
c.error('operator $assign_stmt.op.str() not defined on left operand type `$left_sym.name`',
left.position())
} else if !right_sym.is_number() &&
!c.table.get_final_type_symbol(left_type_unwrapped).is_int() {
c.error('operator $assign_stmt.op.str() not defined on right operand type `$right_sym.name`',
right.position())
}
}
.and_assign, .or_assign, .xor_assign, .mod_assign, .left_shift_assign, .right_shift_assign {
if !left_sym.is_int() &&
!c.table.get_final_type_symbol(left_type_unwrapped).is_int() {
c.error('operator $assign_stmt.op.str() not defined on left operand type `$left_sym.name`',
left.position())
} else if !right_sym.is_int() &&
!c.table.get_final_type_symbol(right_type_unwrapped).is_int() {
c.error('operator $assign_stmt.op.str() not defined on right operand type `$right_sym.name`',
right.position())
}
}
else {}
}
if !is_blank_ident && right_sym.kind != .placeholder && left_sym.kind != .interface_ {
// Dual sides check (compatibility check)
c.check_expected(right_type_unwrapped, left_type_unwrapped) or {
c.error('cannot assign to `$left`: $err', right.position())
}
}
if left_sym.kind == .interface_ {
c.type_implements(right_type, left_type, right.position())
}
}
// this needs to run after the assign stmt left exprs have been run through checker so that ident.obj is set
// Check `x := &y` and `mut x := <-ch`
if right_first is ast.PrefixExpr {
node := right_first
left_first := assign_stmt.left[0]
if left_first is ast.Ident {
assigned_var := left_first
c.expr(node.right)
if node.right is ast.Ident {
if node.right.obj is ast.Var {
v := node.right.obj
right_type0 = v.typ
if node.op == .amp {
if !v.is_mut && assigned_var.is_mut && !c.inside_unsafe {
c.error('`$node.right.name` is immutable, cannot have a mutable reference to it',
node.pos)
}
}
}
}
if node.op == .arrow {
if assigned_var.is_mut {
right_sym := c.table.get_type_symbol(right_type0)
if right_sym.kind == .chan {
chan_info := right_sym.chan_info()
if chan_info.elem_type.is_ptr() && !chan_info.is_mut {
c.error('cannot have a mutable reference to object from `$right_sym.name`',
node.pos)
}
}
}
}
}
}
// right_sym := c.table.get_type_symbol(right_type_unwrapped)
}
fn scope_register_it(mut s ast.Scope, pos token.Position, typ table.Type) {
s.register(ast.Var{
name: 'it'
pos: pos
typ: typ
is_used: true
})
}
fn scope_register_ab(mut s ast.Scope, pos token.Position, typ table.Type) {
s.register(ast.Var{
name: 'a'
pos: pos
typ: typ
is_used: true
})
s.register(ast.Var{
name: 'b'
pos: pos
typ: typ
is_used: true
})
}
fn (mut c Checker) check_array_init_para_type(para string, expr ast.Expr, pos token.Position) {
sym := c.table.get_type_symbol(c.expr(expr))
if sym.kind !in [.int, .any_int] {
c.error('array $para needs to be an int', pos)
}
}
pub fn (mut c Checker) array_init(mut array_init ast.ArrayInit) table.Type {
// println('checker: array init $array_init.pos.line_nr $c.file.path')
mut elem_type := table.void_type
// []string - was set in parser
if array_init.typ != table.void_type {
if array_init.exprs.len == 0 {
if array_init.has_cap {
c.check_array_init_para_type('cap', array_init.cap_expr, array_init.pos)
}
if array_init.has_len {
c.check_array_init_para_type('len', array_init.len_expr, array_init.pos)
}
}
sym := c.table.get_type_symbol(array_init.elem_type)
if array_init.has_default {
default_typ := c.expr(array_init.default_expr)
c.check_expected(default_typ, array_init.elem_type) or {
c.error(err, array_init.default_expr.position())
}
}
if sym.kind == .sum_type {
if array_init.has_len && !array_init.has_default {
c.error('cannot initalize sum type array without default value', array_init.elem_type_pos)
}
}
if sym.kind == .placeholder {
c.error('unknown type `$sym.name`', array_init.elem_type_pos)
}
return array_init.typ
}
// a = []
if array_init.exprs.len == 0 {
// a := fn_returing_opt_array() or { [] }
if c.expected_type == table.void_type && c.expected_or_type != table.void_type {
c.expected_type = c.expected_or_type
}
mut type_sym := c.table.get_type_symbol(c.expected_type)
if type_sym.kind != .array {
c.error('array_init: no type specified (maybe: `[]Type{}` instead of `[]`)',
array_init.pos)
return table.void_type
}
// TODO: seperate errors once bug is fixed with `x := if expr { ... } else { ... }`
// if c.expected_type == table.void_type {
// c.error('array_init: use `[]Type{}` instead of `[]`', array_init.pos)
// return table.void_type
// }
array_info := type_sym.array_info()
array_init.elem_type = array_info.elem_type
return c.expected_type
}
// [1,2,3]
if array_init.exprs.len > 0 && array_init.elem_type == table.void_type {
mut expected_value_type := table.void_type
mut expecting_interface_array := false
if c.expected_type != 0 {
expected_value_type = c.table.value_type(c.expected_type)
if c.table.get_type_symbol(expected_value_type).kind == .interface_ {
// Array of interfaces? (`[dog, cat]`) Save the interface type (`Animal`)
expecting_interface_array = true
array_init.interface_type = expected_value_type
array_init.is_interface = true
}
}
// expecting_interface_array := c.expected_type != 0 &&
// c.table.get_type_symbol(c.table.value_type(c.expected_type)).kind == .interface_
//
// if expecting_interface_array {
// println('ex $c.expected_type')
// }
for i, expr in array_init.exprs {
typ := c.expr(expr)
array_init.expr_types << typ
// The first element's type
if expecting_interface_array {
if i == 0 {
elem_type = expected_value_type
c.expected_type = elem_type
c.type_implements(typ, elem_type, expr.position())
}
continue
}
// The first element's type
if i == 0 {
elem_type = c.table.mktyp(typ)
c.expected_type = elem_type
continue
}
c.check_expected(typ, elem_type) or {
c.error('invalid array element: $err', expr.position())
}
}
if array_init.is_fixed {
idx := c.table.find_or_register_array_fixed(elem_type, array_init.exprs.len,
1)
array_init.typ = table.new_type(idx)
} else {
idx := c.table.find_or_register_array(elem_type, 1)
array_init.typ = table.new_type(idx)
}
array_init.elem_type = elem_type
} else if array_init.is_fixed && array_init.exprs.len == 1 && array_init.elem_type != table.void_type {
// [50]byte
mut fixed_size := 1
init_expr := array_init.exprs[0]
c.expr(init_expr)
match init_expr {
ast.IntegerLiteral {
fixed_size = init_expr.val.int()
}
ast.Ident {
if init_expr.obj is ast.ConstField {
if cint := const_int_value(init_expr.obj) {
fixed_size = cint
}
} else {
c.error('non existent integer const $init_expr.name while initializing the size of a static array',
array_init.pos)
}
}
else {
c.error('expecting `int` for fixed size', array_init.pos)
}
}
idx := c.table.find_or_register_array_fixed(array_init.elem_type, fixed_size,
1)
array_type := table.new_type(idx)
array_init.typ = array_type
}
return array_init.typ
}
fn const_int_value(cfield ast.ConstField) ?int {
if cint := is_const_integer(cfield) {
return cint.val.int()
}
return none
}
fn is_const_integer(cfield ast.ConstField) ?ast.IntegerLiteral {
match cfield.expr {
ast.IntegerLiteral { return cfield.expr }
else {}
}
return none
}
[inline]
fn (mut c Checker) check_loop_label(label string, pos token.Position) {
if label.len == 0 {
// ignore
return
}
if c.loop_label.len != 0 {
c.error('nesting of labelled `for` loops is not supported', pos)
return
}
c.loop_label = label
}
fn (mut c Checker) stmt(node ast.Stmt) {
$if trace_checker ? {
stmt_pos := node.position()
eprintln('checking file: ${c.file.path:-30} | stmt pos: ${stmt_pos.str():-45} | stmt')
}
// c.expected_type = table.void_type
match mut node {
ast.AssertStmt {
cur_exp_typ := c.expected_type
assert_type := c.expr(node.expr)
if assert_type != table.bool_type_idx {
atype_name := c.table.get_type_symbol(assert_type).name
c.error('assert can be used only with `bool` expressions, but found `$atype_name` instead',
node.pos)
}
c.expected_type = cur_exp_typ
}
ast.AssignStmt {
c.assign_stmt(mut node)
}
ast.Block {
if node.is_unsafe {
assert !c.inside_unsafe
c.inside_unsafe = true
c.stmts(node.stmts)
c.inside_unsafe = false
} else {
c.stmts(node.stmts)
}
}
ast.BranchStmt {
if c.in_for_count == 0 {
c.error('$node.kind.str() statement not within a loop', node.pos)
}
if node.label.len > 0 {
if node.label != c.loop_label {
c.error('invalid label name `$node.label`', node.pos)
}
}
}
ast.CompFor {
// node.typ = c.expr(node.expr)
c.stmts(node.stmts)
}
ast.ConstDecl {
c.inside_const = true
c.const_decl(mut node)
c.inside_const = false
}
ast.DeferStmt {
c.stmts(node.stmts)
}
ast.EnumDecl {
c.enum_decl(node)
}
ast.ExprStmt {
node.typ = c.expr(node.expr)
c.expected_type = table.void_type
c.check_expr_opt_call(node.expr, table.void_type)
// TODO This should work, even if it's prolly useless .-.
// node.typ = c.check_expr_opt_call(node.expr, table.void_type)
}
ast.FnDecl {
c.fn_decl(mut node)
}
ast.ForCStmt {
c.in_for_count++
prev_loop_label := c.loop_label
c.stmt(node.init)
c.expr(node.cond)
c.stmt(node.inc)
c.check_loop_label(node.label, node.pos)
c.stmts(node.stmts)
c.loop_label = prev_loop_label
c.in_for_count--
}
ast.ForInStmt {
c.in_for_count++
prev_loop_label := c.loop_label
typ := c.expr(node.cond)
typ_idx := typ.idx()
if node.key_var.len > 0 && node.key_var != '_' {
c.check_valid_snake_case(node.key_var, 'variable name', node.pos)
}
if node.val_var.len > 0 && node.val_var != '_' {
c.check_valid_snake_case(node.val_var, 'variable name', node.pos)
}
if node.is_range {
high_type := c.expr(node.high)
high_type_idx := high_type.idx()
if typ_idx in table.integer_type_idxs && high_type_idx !in table.integer_type_idxs {
c.error('range types do not match', node.cond.position())
} else if typ_idx in table.float_type_idxs || high_type_idx in table.float_type_idxs {
c.error('range type can not be float', node.cond.position())
} else if typ_idx == table.bool_type_idx || high_type_idx == table.bool_type_idx {
c.error('range type can not be bool', node.cond.position())
} else if typ_idx == table.string_type_idx || high_type_idx == table.string_type_idx {
c.error('range type can not be string', node.cond.position())
}
} else {
sym := c.table.get_type_symbol(typ)
if sym.kind == .struct_ {
// iterators
next_fn := sym.find_method('next') or {
c.error('a struct must have a `next()` method to be an iterator',
node.cond.position())
return
}
if !next_fn.return_type.has_flag(.optional) {
c.error('iterator method `next()` must return an optional', node.cond.position())
}
// the receiver
if next_fn.params.len != 1 {
c.error('iterator method `next()` must have 0 parameters', node.cond.position())
}
val_type := next_fn.return_type.clear_flag(.optional)
node.cond_type = typ
node.kind = sym.kind
node.val_type = val_type
node.scope.update_var_type(node.val_var, val_type)
} else {
if sym.kind == .map && !(node.key_var.len > 0 && node.val_var.len > 0) {
c.error('declare a key and a value variable when ranging a map: `for key, val in map {`\n' +
'use `_` if you do not need the variable', node.pos)
}
if node.key_var.len > 0 {
key_type := match sym.kind {
.map { sym.map_info().key_type }
else { table.int_type }
}
node.key_type = key_type
node.scope.update_var_type(node.key_var, key_type)
}
mut value_type := c.table.value_type(typ)
if value_type == table.void_type || typ.has_flag(.optional) {
if typ != table.void_type {
c.error('for in: cannot index `${c.table.type_to_str(typ)}`',
node.cond.position())
}
}
if node.val_is_mut {
value_type = value_type.to_ptr()
}
node.cond_type = typ
node.kind = sym.kind
node.val_type = value_type
node.scope.update_var_type(node.val_var, value_type)
}
}
c.check_loop_label(node.label, node.pos)
c.stmts(node.stmts)
c.loop_label = prev_loop_label
c.in_for_count--
}
ast.ForStmt {
c.for_stmt(mut node)
}
ast.GlobalDecl {
for field in node.fields {
c.check_valid_snake_case(field.name, 'global name', field.pos)
if field.name in c.global_names {
c.error('duplicate global `$field.name`', field.pos)
}
c.global_names << field.name
}
}
ast.GoStmt {
if node.call_expr !is ast.CallExpr {
c.error('expression in `go` must be a function call', node.call_expr.position())
}
c.expr(node.call_expr)
if mut node.call_expr is ast.CallExpr {
// Make sure there are no mutable arguments
for arg in node.call_expr.args {
if arg.is_mut && !arg.typ.is_ptr() {
c.error('function in `go` statement cannot contain mutable non-reference arguments',
arg.expr.position())
}
}
if node.call_expr.is_method && node.call_expr.receiver_type.is_ptr() && !node.call_expr.left_type.is_ptr() {
c.error('method in `go` statement cannot have non-reference mutable receiver',
node.call_expr.left.position())
}
}
}
ast.GotoLabel {}
ast.GotoStmt {
// TODO: check label doesn't bypass variable declarations
}
ast.HashStmt {
c.hash_stmt(mut node)
}
ast.Import {
c.import_stmt(node)
}
ast.InterfaceDecl {
c.interface_decl(node)
}
ast.Module {
c.mod = node.name
c.is_builtin_mod = node.name in ['builtin', 'os', 'strconv']
c.check_valid_snake_case(node.name, 'module name', node.pos)
}
ast.Return {
// c.returns = true
c.return_stmt(mut node)
c.scope_returns = true
}
ast.SqlStmt {
c.sql_stmt(mut node)
}
ast.StructDecl {
c.struct_decl(node)
}
ast.TypeDecl {
c.type_decl(node)
}
}
}
fn (mut c Checker) hash_stmt(mut node ast.HashStmt) {
if c.skip_flags {
return
}
if c.pref.backend == .js {
if !c.file.path.ends_with('.js.v') {
c.error('Hash statements are only allowed in backend specific files such "x.js.v"',
node.pos)
}
if c.mod == 'main' {
c.error('Hash statements are not allowed in the main module. Please place them in a separate module.',
node.pos)
}
return
}
if node.kind == 'include' {
mut flag := node.main
if flag.contains('@VROOT') {
vroot := util.resolve_vroot(flag, c.file.path) or {
c.error(err, node.pos)
return
}
node.val = 'include $vroot'
node.main = vroot
}
flag_no_comment := flag.all_before('//').trim_space()
if !((flag_no_comment.starts_with('"') && flag_no_comment.ends_with('"')) ||
(flag_no_comment.starts_with('<') && flag_no_comment.ends_with('>'))) {
c.error('including C files should use either `"header_file.h"` or `<header_file.h>` quoting',
node.pos)
}
} else if node.kind == 'pkgconfig' {
args := if node.main.contains('--') {
node.main.split(' ')
} else {
'--cflags --libs $node.main'.split(' ')
}
mut m := pkgconfig.main(args) or {
c.error(err, node.pos)
return
}
cflags := m.run() or {
c.error(err, node.pos)
return
}
c.table.parse_cflag(cflags, c.mod, c.pref.compile_defines_all) or {
c.error(err, node.pos)
return
}
} else if node.kind == 'flag' {
// #flag linux -lm
mut flag := node.main
// expand `@VROOT` to its absolute path
if flag.contains('@VROOT') {
flag = util.resolve_vroot(flag, c.file.path) or {
c.error(err, node.pos)
return
}
}
for deprecated in ['@VMOD', '@VMODULE', '@VPATH', '@VLIB_PATH'] {
if flag.contains(deprecated) {
c.error('$deprecated had been deprecated, use @VROOT instead.', node.pos)
}
}
// println('adding flag "$flag"')
c.table.parse_cflag(flag, c.mod, c.pref.compile_defines_all) or { c.error(err, node.pos) }
} else {
if node.kind != 'define' {
c.error('expected `#define`, `#flag`, `#include` or `#pkgconfig` not $node.val',
node.pos)
}
}
}
fn (mut c Checker) import_stmt(imp ast.Import) {
for sym in imp.syms {
name := '${imp.mod}.$sym.name'
if sym.name[0].is_capital() {
if type_sym := c.table.find_type(name) {
if type_sym.kind != .placeholder {
if !type_sym.is_public {
c.error('module `$imp.mod` type `$sym.name` is private', sym.pos)
}
continue
}
}
c.error('module `$imp.mod` has no type `$sym.name`', sym.pos)
continue
}
if func := c.table.find_fn(name) {
if !func.is_pub {
c.error('module `$imp.mod` function `${sym.name}()` is private', sym.pos)
}
continue
}
if _ := c.file.global_scope.find_const(name) {
continue
}
c.error('module `$imp.mod` has no constant or function `$sym.name`', sym.pos)
}
}
fn (mut c Checker) stmts(stmts []ast.Stmt) {
mut unreachable := token.Position{
line_nr: -1
}
c.expected_type = table.void_type
for stmt in stmts {
if c.scope_returns {
if unreachable.line_nr == -1 {
unreachable = stmt.position()
}
}
c.stmt(stmt)
}
if unreachable.line_nr >= 0 {
c.error('unreachable code', unreachable)
}
c.scope_returns = false
c.expected_type = table.void_type
}
[inline]
pub fn (c &Checker) unwrap_generic(typ table.Type) table.Type {
if typ.has_flag(.generic) {
// return c.cur_generic_type
return c.cur_generic_type.derive(typ).clear_flag(.generic)
}
return typ
}
// TODO node must be mut
pub fn (mut c Checker) expr(node ast.Expr) table.Type {
c.expr_level++
defer {
c.expr_level--
}
if c.expr_level > 200 {
c.error('checker: too many expr levels: $c.expr_level ', node.position())
return table.void_type
}
match mut node {
ast.CTempVar {
return node.typ
}
ast.AnonFn {
keep_fn := c.cur_fn
c.cur_fn = &node.decl
c.stmts(node.decl.stmts)
c.cur_fn = keep_fn
return node.typ
}
ast.ArrayDecompose {
typ := c.expr(node.expr)
type_sym := c.table.get_type_symbol(typ)
if type_sym.kind != .array {
c.error('decomposition can only be used on arrays', node.expr.position())
return table.void_type
}
array_info := type_sym.info as table.Array
elem_type := array_info.elem_type.set_flag(.variadic)
node.expr_type = typ
node.arg_type = elem_type
return elem_type
}
ast.ArrayInit {
return c.array_init(mut node)
}
ast.AsCast {
node.expr_type = c.expr(node.expr)
expr_type_sym := c.table.get_type_symbol(node.expr_type)
type_sym := c.table.get_type_symbol(node.typ)
if expr_type_sym.kind == .sum_type {
if type_sym.kind == .placeholder {
// Unknown type used in the right part of `as`
c.error('unknown type `$type_sym.name`', node.pos)
}
if !c.table.sumtype_has_variant(node.expr_type, node.typ) {
c.error('cannot cast `$expr_type_sym.name` to `$type_sym.name`', node.pos)
// c.error('only $info.variants can be casted to `$typ`', node.pos)
}
} else {
mut s := 'cannot cast non-sum type `$expr_type_sym.name` using `as`'
if type_sym.kind == .sum_type {
s += ' - use e.g. `${type_sym.name}(some_expr)` instead.'
}
c.error(s, node.pos)
}
if expr_type_sym.kind == .sum_type {
return node.typ
}
return node.typ.to_ptr()
}
ast.Assoc {
v := node.scope.find_var(node.var_name) or { panic(err) }
for i, _ in node.fields {
c.expr(node.exprs[i])
}
node.typ = v.typ
return v.typ
}
ast.BoolLiteral {
return table.bool_type
}
ast.CastExpr {
return c.cast_expr(mut node)
}
ast.CallExpr {
return c.call_expr(mut node)
}
ast.ChanInit {
return c.chan_init(mut node)
}
ast.CharLiteral {
// return any_int, not rune, so that we can do "bytes << `A`" without a cast etc
// return table.any_int_type
return table.rune_type
// return table.byte_type
}
ast.Comment {
return table.void_type
}
ast.AtExpr {
return c.at_expr(mut node)
}
ast.ComptimeCall {
node.sym = c.table.get_type_symbol(c.unwrap_generic(c.expr(node.left)))
if node.is_vweb {
// TODO assoc parser bug
pref := *c.pref
pref2 := {
pref |
is_vweb: true
}
mut c2 := new_checker(c.table, pref2)
c2.check(node.vweb_tmpl)
c.warnings << c2.warnings
c.errors << c2.errors
c.nr_warnings += c2.nr_warnings
c.nr_errors += c2.nr_errors
}
if node.method_name == 'html' {
return c.table.find_type_idx('vweb.Result')
}
return table.string_type
}
ast.ComptimeSelector {
node.left_type = c.unwrap_generic(c.expr(node.left))
expr_type := c.unwrap_generic(c.expr(node.field_expr))
expr_sym := c.table.get_type_symbol(expr_type)
if expr_type != table.string_type {
c.error('expected `string` instead of `$expr_sym.name` (e.g. `field.name`)',
node.field_expr.position())
}
if node.field_expr is ast.SelectorExpr {
expr_name := node.field_expr.expr.str()
if expr_name in c.comptime_fields_type {
return c.comptime_fields_type[expr_name]
}
}
c.error('compile time field access can only be used when iterating over `T.fields`',
node.field_expr.position())
return table.void_type
}
ast.ConcatExpr {
return c.concat_expr(mut node)
}
ast.EnumVal {
return c.enum_val(mut node)
}
ast.FloatLiteral {
return table.any_flt_type
}
ast.Ident {
// c.checked_ident = node.name
res := c.ident(mut node)
// c.checked_ident = ''
return res
}
ast.IfExpr {
return c.if_expr(mut node)
}
ast.IfGuardExpr {
node.expr_type = c.expr(node.expr)
if !node.expr_type.has_flag(.optional) {
c.error('expression should return an option', node.expr.position())
}
return table.bool_type
}
ast.IndexExpr {
return c.index_expr(mut node)
}
ast.InfixExpr {
return c.infix_expr(mut node)
}
ast.IntegerLiteral {
return table.any_int_type
}
ast.LockExpr {
return c.lock_expr(mut node)
}
ast.MapInit {
return c.map_init(mut node)
}
ast.MatchExpr {
return c.match_expr(mut node)
}
ast.PostfixExpr {
return c.postfix_expr(mut node)
}
ast.PrefixExpr {
return c.prefix_expr(mut node)
}
ast.None {
return table.none_type
}
ast.OrExpr {
// never happens
return table.void_type
}
// ast.OrExpr2 {
// return node.typ
// }
ast.ParExpr {
return c.expr(node.expr)
}
ast.RangeExpr {
// never happens
return table.void_type
}
ast.SelectExpr {
return c.select_expr(mut node)
}
ast.SelectorExpr {
return c.selector_expr(mut node)
}
ast.SizeOf {
return table.u32_type
}
ast.SqlExpr {
return c.sql_expr(mut node)
}
ast.StringLiteral {
if node.language == .c {
return table.byteptr_type
}
return table.string_type
}
ast.StringInterLiteral {
return c.string_inter_lit(mut node)
}
ast.StructInit {
return c.struct_init(mut node)
}
ast.Type {
return node.typ
}
ast.TypeOf {
node.expr_type = c.expr(node.expr)
return table.string_type
}
ast.UnsafeExpr {
return c.unsafe_expr(mut node)
}
ast.Likely {
ltype := c.expr(node.expr)
if !c.check_types(ltype, table.bool_type) {
ltype_sym := c.table.get_type_symbol(ltype)
lname := if node.is_likely { '_likely_' } else { '_unlikely_' }
c.error('`${lname}()` expects a boolean expression, instead it got `$ltype_sym.name`',
node.pos)
}
return table.bool_type
}
}
return table.void_type
}
pub fn (mut c Checker) cast_expr(mut node ast.CastExpr) table.Type {
node.expr_type = c.expr(node.expr) // type to be casted
from_type_sym := c.table.get_type_symbol(node.expr_type)
to_type_sym := c.table.get_type_symbol(node.typ) // type to be used as cast
expr_is_ptr := node.expr_type.is_ptr() || node.expr_type.idx() in table.pointer_type_idxs
if expr_is_ptr && to_type_sym.kind == .string && !node.in_prexpr {
if node.has_arg {
c.warn('to convert a C string buffer pointer to a V string, please use x.vstring_with_len(len) instead of string(x,len)',
node.pos)
} else {
c.warn('to convert a C string buffer pointer to a V string, please use x.vstring() instead of string(x)',
node.pos)
}
}
if node.expr_type == table.byte_type && to_type_sym.kind == .string {
c.error('can not cast type `byte` to string, use `${node.expr.str()}.str()` instead.',
node.pos)
}
if to_type_sym.kind == .sum_type {
if node.expr_type in [table.any_int_type, table.any_flt_type] {
node.expr_type = c.promote_num(node.expr_type, if node.expr_type == table.any_int_type {
table.int_type
} else {
table.f64_type
})
}
if !c.table.sumtype_has_variant(node.typ, node.expr_type) {
c.error('cannot cast `$from_type_sym.name` to `$to_type_sym.name`', node.pos)
}
} else if mut to_type_sym.info is table.Alias {
if !c.check_types(node.expr_type, to_type_sym.info.parent_type) {
parent_type_sym := c.table.get_type_symbol(to_type_sym.info.parent_type)
c.error('cannot convert type `$from_type_sym.name` to `$to_type_sym.name` (alias to `$parent_type_sym.name`)',
node.pos)
}
} else if node.typ == table.string_type &&
(from_type_sym.kind in [.any_int, .int, .byte, .byteptr, .bool] ||
(from_type_sym.kind == .array && from_type_sym.name == 'array_byte')) {
type_name := c.table.type_to_str(node.expr_type)
c.error('cannot cast type `$type_name` to string, use `x.str()` instead', node.pos)
} else if node.expr_type == table.string_type {
if to_type_sym.kind != .alias {
mut error_msg := 'cannot cast a string'
if mut node.expr is ast.StringLiteral {
if node.expr.val.len == 1 {
error_msg += ", for denoting characters use `$node.expr.val` instead of '$node.expr.val'"
}
}
c.error(error_msg, node.pos)
}
} else if to_type_sym.kind == .byte &&
node.expr_type != table.voidptr_type && from_type_sym.kind != .enum_ && !node.expr_type.is_int() &&
!node.expr_type.is_float() && !node.expr_type.is_ptr() {
type_name := c.table.type_to_str(node.expr_type)
c.error('cannot cast type `$type_name` to `byte`', node.pos)
} else if to_type_sym.kind == .struct_ && !node.typ.is_ptr() && !(to_type_sym.info as table.Struct).is_typedef {
// For now we ignore C typedef because of `C.Window(C.None)` in vlib/clipboard
if from_type_sym.kind == .struct_ && !node.expr_type.is_ptr() {
from_type_info := from_type_sym.info as table.Struct
to_type_info := to_type_sym.info as table.Struct
if !c.check_struct_signature(from_type_info, to_type_info) {
c.error('cannot convert struct `$from_type_sym.name` to struct `$to_type_sym.name`',
node.pos)
}
} else {
type_name := c.table.type_to_str(node.expr_type)
c.error('cannot cast `$type_name` to struct', node.pos)
}
} else if node.typ == table.bool_type {
c.error('cannot cast to bool - use e.g. `some_int != 0` instead', node.pos)
} else if node.expr_type == table.none_type {
type_name := c.table.type_to_str(node.typ)
c.error('cannot cast `none` to `$type_name`', node.pos)
} else if from_type_sym.kind == .struct_ && !node.expr_type.is_ptr() && to_type_sym.kind !in
[.sum_type, .interface_] && !c.is_builtin_mod {
type_name := c.table.type_to_str(node.typ)
c.error('cannot cast `struct` to `$type_name`', node.pos)
} else if node.expr_type.has_flag(.optional) || node.expr_type.has_flag(.variadic) {
// variadic case can happen when arrays are converted into variadic
msg := if node.expr_type.has_flag(.optional) { 'an optional' } else { 'a variadic' }
c.error('cannot type cast $msg', node.pos)
} else if !c.inside_unsafe && node.typ.is_ptr() && node.expr_type.is_ptr() {
ft := c.table.type_to_str(node.expr_type)
tt := c.table.type_to_str(node.typ)
c.warn('casting `$ft` to `$tt` is only allowed in `unsafe` code', node.pos)
}
if node.has_arg {
c.expr(node.arg)
}
node.typname = c.table.get_type_symbol(node.typ).name
return node.typ
}
fn (mut c Checker) at_expr(mut node ast.AtExpr) table.Type {
match node.kind {
.fn_name {
node.val = c.cur_fn.name.all_after_last('.')
}
.mod_name {
node.val = c.cur_fn.mod
}
.struct_name {
if c.cur_fn.is_method {
node.val = c.table.type_to_str(c.cur_fn.receiver.typ).all_after_last('.')
} else {
node.val = ''
}
}
.vexe_path {
node.val = pref.vexe_path()
}
.file_path {
node.val = os.real_path(c.file.path)
}
.line_nr {
node.val = (node.pos.line_nr + 1).str()
}
.column_nr {
_, column := util.filepath_pos_to_source_and_column(c.file.path, node.pos)
node.val = (column + 1).str()
}
.vhash {
node.val = util.vhash()
}
.vmod_file {
if c.vmod_file_content.len == 0 {
mut mcache := vmod.get_cache()
vmod_file_location := mcache.get_by_file(c.file.path)
if vmod_file_location.vmod_file.len == 0 {
c.error('@VMOD_FILE can be used only in projects, that have v.mod file',
node.pos)
}
vmod_content := os.read_file(vmod_file_location.vmod_file) or { '' }
$if windows {
c.vmod_file_content = vmod_content.replace('\r\n', '\n')
} $else {
c.vmod_file_content = vmod_content
}
}
node.val = c.vmod_file_content
}
.unknown {
c.error('unknown @ identifier: ${node.name}. Available identifiers: $token.valid_at_tokens',
node.pos)
}
}
return table.string_type
}
pub fn (mut c Checker) ident(mut ident ast.Ident) table.Type {
// TODO: move this
if c.const_deps.len > 0 {
mut name := ident.name
if !name.contains('.') && ident.mod != 'builtin' {
name = '${ident.mod}.$ident.name'
}
if name == c.const_decl {
c.error('cycle in constant `$c.const_decl`', ident.pos)
return table.void_type
}
c.const_deps << name
}
if ident.kind == .blank_ident {
if ident.tok_kind !in [.assign, .decl_assign] {
c.error('undefined ident: `_` (may only be used in assignments)', ident.pos)
}
return table.void_type
}
// second use
if ident.kind in [.constant, .global, .variable] {
info := ident.info as ast.IdentVar
// if info.typ == table.t_type {
// Got a var with type T, return current generic type
// return c.cur_generic_type
// }
return info.typ
} else if ident.kind == .function {
info := ident.info as ast.IdentFn
return info.typ
} else if ident.kind == .unresolved {
// first use
if ident.tok_kind == .assign && ident.is_mut {
c.error('`mut` not allowed with `=` (use `:=` to declare a variable)', ident.pos)
}
if obj := ident.scope.find(ident.name) {
match mut obj {
ast.GlobalField {
ident.kind = .global
ident.info = ast.IdentVar{
typ: obj.typ
}
ident.obj = obj
return obj.typ
}
ast.Var {
// incase var was not marked as used yet (vweb tmpl)
obj.is_used = true
if ident.pos.pos < obj.pos.pos {
c.error('undefined variable `$ident.name` (used before declaration)',
ident.pos)
}
is_sum_type_cast := obj.sum_type_casts.len != 0 && !c.prevent_sum_type_unwrapping_once
c.prevent_sum_type_unwrapping_once = false
mut typ := if is_sum_type_cast { obj.sum_type_casts.last() } else { obj.typ }
if typ == 0 {
if mut obj.expr is ast.Ident {
if obj.expr.kind == .unresolved {
c.error('unresolved variable: `$ident.name`', ident.pos)
return table.void_type
}
}
if mut obj.expr is ast.IfGuardExpr {
// new variable from if guard shouldn't have the optional flag for further use
// a temp variable will be generated which unwraps it
if_guard_var_type := c.expr(obj.expr.expr)
typ = if_guard_var_type.clear_flag(.optional)
} else {
typ = c.expr(obj.expr)
}
}
is_optional := typ.has_flag(.optional)
ident.kind = .variable
ident.info = ast.IdentVar{
typ: typ
is_optional: is_optional
}
// if typ == table.t_type {
// sym := c.table.get_type_symbol(c.cur_generic_type)
// println('IDENT T unresolved $ident.name typ=$sym.name')
// Got a var with type T, return current generic type
// typ = c.cur_generic_type
// }
// } else {
if !is_sum_type_cast {
obj.typ = typ
}
ident.obj = obj
// unwrap optional (`println(x)`)
if is_optional {
return typ.clear_flag(.optional)
}
return typ
}
else {}
}
}
mut name := ident.name
// check for imported symbol
if name in c.file.imported_symbols {
name = c.file.imported_symbols[name]
}
// prepend mod to look for fn call or const
else if !name.contains('.') && ident.mod != 'builtin' {
name = '${ident.mod}.$ident.name'
}
if obj := c.file.global_scope.find(name) {
match mut obj {
ast.ConstField {
mut typ := obj.typ
if typ == 0 {
typ = c.expr(obj.expr)
}
ident.name = name
ident.kind = .constant
ident.info = ast.IdentVar{
typ: typ
}
obj.typ = typ
ident.obj = obj
return typ
}
else {}
}
}
// Non-anon-function object (not a call), e.g. `onclick(my_click)`
if func := c.table.find_fn(name) {
fn_type := table.new_type(c.table.find_or_register_fn_type(ident.mod, func,
false, true))
ident.name = name
ident.kind = .function
ident.info = ast.IdentFn{
typ: fn_type
}
return fn_type
}
}
if ident.language == .c {
if ident.name == 'C.NULL' {
return table.voidptr_type
}
return table.int_type
}
if c.inside_sql {
if field := c.table.struct_find_field(c.cur_orm_ts, ident.name) {
return field.typ
}
}
if ident.kind == .unresolved && ident.mod != 'builtin' {
// search in the `builtin` idents, for example
// main.compare_f32 may actually be builtin.compare_f32
saved_mod := ident.mod
ident.mod = 'builtin'
builtin_type := c.ident(mut ident)
if builtin_type != table.void_type {
return builtin_type
}
ident.mod = saved_mod
}
if ident.tok_kind == .assign {
c.error('undefined ident: `$ident.name` (use `:=` to declare a variable)', ident.pos)
} else {
c.error('undefined ident: `$ident.name`', ident.pos)
}
if c.table.known_type(ident.name) {
// e.g. `User` in `json.decode(User, '...')`
return table.void_type
}
return table.void_type
}
pub fn (mut c Checker) concat_expr(mut concat_expr ast.ConcatExpr) table.Type {
mut mr_types := []table.Type{}
for expr in concat_expr.vals {
mr_types << c.expr(expr)
}
if concat_expr.vals.len == 1 {
typ := mr_types[0]
concat_expr.return_type = typ
return typ
} else {
typ := c.table.find_or_register_multi_return(mr_types)
table.new_type(typ)
concat_expr.return_type = typ
return typ
}
}
pub fn (mut c Checker) match_expr(mut node ast.MatchExpr) table.Type {
node.is_expr = c.expected_type != table.void_type
node.expected_type = c.expected_type
cond_type := c.expr(node.cond)
// we setting this here rather than at the end of the method
// since it is used in c.match_exprs() it saves checking twice
node.cond_type = cond_type
if cond_type == 0 {
c.error('compiler bug: match 0 cond type', node.pos)
}
cond_type_sym := c.table.get_type_symbol(cond_type)
if cond_type_sym.kind !in [.interface_, .sum_type] {
node.is_sum_type = false
}
c.match_exprs(mut node, cond_type_sym)
c.expected_type = cond_type
mut ret_type := table.void_type
mut nbranches_with_return := 0
mut nbranches_without_return := 0
for branch in node.branches {
c.stmts(branch.stmts)
if node.is_expr && branch.stmts.len > 0 {
// ignore last statement - workaround
// currently the last statement in a match branch does not have an
// expected value set, so e.g. IfExpr.is_expr is not set.
// probably any mismatch will be caught by not producing a value instead
for st in branch.stmts[0..branch.stmts.len - 1] {
// must not contain C statements
st.check_c_expr() or {
c.error('`match` expression branch has $err', st.position())
}
}
}
// If the last statement is an expression, return its type
if branch.stmts.len > 0 {
mut stmt := branch.stmts[branch.stmts.len - 1]
match mut stmt {
ast.ExprStmt {
expr_type := c.expr(stmt.expr)
if ret_type == table.void_type {
ret_type = expr_type
stmt.typ = ret_type
} else if node.is_expr && ret_type != expr_type {
sym := c.table.get_type_symbol(ret_type)
c.error('return type mismatch, it should be `$sym.name`', stmt.expr.position())
}
}
else {
// TODO: ask alex about this
// typ := c.expr(stmt.expr)
// type_sym := c.table.get_type_symbol(typ)
// p.warn('match expr ret $type_sym.name')
// node.typ = typ
// return typ
}
}
}
if has_return := c.has_return(branch.stmts) {
if has_return {
nbranches_with_return++
} else {
nbranches_without_return++
}
}
}
if nbranches_with_return > 0 {
if nbranches_with_return == node.branches.len {
// an exhaustive match, and all branches returned
c.returns = true
}
if nbranches_without_return > 0 {
// some of the branches did not return
c.returns = false
}
}
// if ret_type != table.void_type {
// node.is_expr = c.expected_type != table.void_type
// node.expected_type = c.expected_type
// }
node.return_type = ret_type
return ret_type
}
fn (mut c Checker) match_exprs(mut node ast.MatchExpr, cond_type_sym table.TypeSymbol) {
// branch_exprs is a histogram of how many times
// an expr was used in the match
mut branch_exprs := map[string]int{}
for branch_i, _ in node.branches {
mut branch := node.branches[branch_i]
mut expr_types := []ast.Type{}
for expr in branch.exprs {
mut key := ''
if expr is ast.RangeExpr {
mut low := 0
mut high := 0
c.expected_type = node.expected_type
low_expr := expr.low
high_expr := expr.high
if low_expr is ast.IntegerLiteral {
if high_expr is ast.IntegerLiteral {
low = low_expr.val.int()
high = high_expr.val.int()
} else {
c.error('mismatched range types', low_expr.pos)
}
} else if low_expr is ast.CharLiteral {
if high_expr is ast.CharLiteral {
low = low_expr.val[0]
high = high_expr.val[0]
} else {
c.error('mismatched range types', low_expr.pos)
}
} else {
typ := c.table.type_to_str(c.expr(expr.low))
c.error('cannot use type `$typ` in match range', branch.pos)
}
for i in low .. high + 1 {
key = i.str()
val := if key in branch_exprs { branch_exprs[key] } else { 0 }
if val == 1 {
c.error('match case `$key` is handled more than once', branch.pos)
}
branch_exprs[key] = val + 1
}
continue
}
match expr {
ast.Type {
key = c.table.type_to_str(expr.typ)
expr_types << expr
}
ast.EnumVal {
key = expr.val
}
else {
key = expr.str()
}
}
val := if key in branch_exprs { branch_exprs[key] } else { 0 }
if val == 1 {
c.error('match case `$key` is handled more than once', branch.pos)
}
c.expected_type = node.cond_type
expr_type := c.expr(expr)
if expr_type.idx() == 0 {
// parser failed, stop checking
return
}
if cond_type_sym.kind == .interface_ {
// TODO
// This generates a memory issue with TCC
// Needs to be checked later when TCC errors are fixed
// Current solution is to move expr.position() to its own statement
// c.type_implements(expr_type, c.expected_type, expr.position())
expr_pos := expr.position()
c.type_implements(expr_type, c.expected_type, expr_pos)
} else if mut cond_type_sym.info is table.SumType {
if expr_type !in cond_type_sym.info.variants {
expr_str := c.table.type_to_str(expr_type)
expect_str := c.table.type_to_str(node.cond_type)
c.error('`$expect_str` has no variant `$expr_str`', expr.position())
}
} else if !c.check_types(expr_type, node.cond_type) {
expr_str := c.table.type_to_str(expr_type)
expect_str := c.table.type_to_str(node.cond_type)
c.error('cannot match `$expr_str` with `$expect_str` condition', expr.position())
}
branch_exprs[key] = val + 1
}
// when match is sum type matching, then register smart cast for every branch
if expr_types.len > 0 {
if cond_type_sym.kind == .sum_type {
mut expr_type := table.Type(0)
if expr_types.len > 1 {
mut agg_name := strings.new_builder(20)
mut agg_cname := strings.new_builder(20)
agg_name.write('(')
for i, expr in expr_types {
if i > 0 {
agg_name.write(' | ')
agg_cname.write('___')
}
type_str := c.table.type_to_str(expr.typ)
name := if c.is_builtin_mod { type_str } else { '${c.mod}.$type_str' }
agg_name.write(name)
agg_cname.write(util.no_dots(name))
}
agg_name.write(')')
name := agg_name.str()
existing_idx := c.table.type_idxs[name]
if existing_idx > 0 {
expr_type = existing_idx
} else {
expr_type = c.table.register_type_symbol(table.TypeSymbol{
name: name
cname: agg_cname.str()
kind: .aggregate
mod: c.mod
info: table.Aggregate{
types: expr_types.map(it.typ)
}
})
}
} else {
expr_type = expr_types[0].typ
}
c.smartcast_sumtype(node.cond, node.cond_type, expr_type, mut branch.scope)
}
}
}
// check that expressions are exhaustive
// this is achieved either by putting an else
// or, when the match is on a sum type or an enum
// by listing all variants or values
mut is_exhaustive := true
mut unhandled := []string{}
if node.cond_type == table.bool_type {
variants := ['true', 'false']
for v in variants {
if v !in branch_exprs {
is_exhaustive = false
unhandled << '`$v`'
}
}
} else {
match mut cond_type_sym.info {
table.SumType {
for v in cond_type_sym.info.variants {
v_str := c.table.type_to_str(v)
if v_str !in branch_exprs {
is_exhaustive = false
unhandled << '`$v_str`'
}
}
}
//
table.Enum {
for v in cond_type_sym.info.vals {
if v !in branch_exprs {
is_exhaustive = false
unhandled << '`.$v`'
}
}
}
else {
is_exhaustive = false
}
}
}
mut else_branch := node.branches[node.branches.len - 1]
mut has_else := else_branch.is_else
if !has_else {
for i, branch in node.branches {
if branch.is_else && i != node.branches.len - 1 {
c.error('`else` must be the last branch of `match`', branch.pos)
else_branch = branch
has_else = true
}
}
}
if is_exhaustive {
if has_else {
c.error('match expression is exhaustive, `else` is unnecessary', else_branch.pos)
}
return
}
if has_else {
return
}
mut err_details := 'match must be exhaustive'
if unhandled.len > 0 {
err_details += ' (add match branches for: '
if unhandled.len < match_exhaustive_cutoff_limit {
err_details += unhandled.join(', ')
} else {
remaining := unhandled.len - match_exhaustive_cutoff_limit
err_details += unhandled[0..match_exhaustive_cutoff_limit].join(', ')
err_details += ', and $remaining others ...'
}
err_details += ' or `else {}` at the end)'
} else {
err_details += ' (add `else {}` at the end)'
}
c.error(err_details, node.pos)
}
// smartcast takes the expression with the current type which should be smartcasted to the target type in the given scope
fn (c Checker) smartcast_sumtype(expr ast.Expr, cur_type table.Type, to_type table.Type, mut scope ast.Scope) {
match mut expr {
ast.SelectorExpr {
mut is_mut := false
mut sum_type_casts := []table.Type{}
expr_sym := c.table.get_type_symbol(expr.expr_type)
if field := c.table.struct_find_field(expr_sym, expr.field_name) {
if field.is_mut {
root_ident := expr.root_ident()
if v := scope.find_var(root_ident.name) {
is_mut = v.is_mut
}
}
}
if field := scope.find_struct_field(expr.expr_type, expr.field_name) {
sum_type_casts << field.sum_type_casts
}
// smartcast either if the value is immutable or if the mut argument is explicitly given
if !is_mut || expr.is_mut {
sum_type_casts << to_type
scope.register_struct_field(ast.ScopeStructField{
struct_type: expr.expr_type
name: expr.field_name
typ: cur_type
sum_type_casts: sum_type_casts
pos: expr.pos
})
}
}
ast.Ident {
mut is_mut := false
mut sum_type_casts := []table.Type{}
mut is_already_casted := false
if expr.obj is ast.Var {
v := expr.obj as ast.Var
is_mut = v.is_mut
sum_type_casts << v.sum_type_casts
is_already_casted = v.pos.pos == expr.pos.pos
}
// smartcast either if the value is immutable or if the mut argument is explicitly given
if (!is_mut || expr.is_mut) && !is_already_casted {
sum_type_casts << to_type
scope.register(ast.Var{
name: expr.name
typ: cur_type
pos: expr.pos
is_used: true
is_mut: expr.is_mut
sum_type_casts: sum_type_casts
})
}
}
else {}
}
}
pub fn (mut c Checker) select_expr(mut node ast.SelectExpr) table.Type {
node.is_expr = c.expected_type != table.void_type
node.expected_type = c.expected_type
for branch in node.branches {
c.stmt(branch.stmt)
match branch.stmt {
ast.ExprStmt {
if branch.is_timeout {
if !branch.stmt.typ.is_int() {
tsym := c.table.get_type_symbol(branch.stmt.typ)
c.error('invalid type `$tsym.name` for timeout - expected integer type aka `time.Duration`',
branch.stmt.pos)
}
} else {
if branch.stmt.expr is ast.InfixExpr {
if branch.stmt.expr.left !is ast.Ident &&
branch.stmt.expr.left !is ast.SelectorExpr && branch.stmt.expr.left !is ast.IndexExpr {
c.error('channel in `select` key must be predefined', branch.stmt.expr.left.position())
}
} else {
c.error('invalid expression for `select` key', branch.stmt.expr.position())
}
}
}
ast.AssignStmt {
expr := branch.stmt.right[0]
match expr {
ast.PrefixExpr {
if expr.right !is ast.Ident &&
expr.right !is ast.SelectorExpr && expr.right !is ast.IndexExpr {
c.error('channel in `select` key must be predefined', expr.right.position())
}
if expr.or_block.kind != .absent {
err_prefix := if expr.or_block.kind == .block {
'or block'
} else {
'error propagation'
}
c.error('$err_prefix not allowed in `select` key', expr.or_block.pos)
}
}
else {
c.error('`<-` receive expression expected', branch.stmt.right[0].position())
}
}
}
else {
if !branch.is_else {
c.error('receive or send statement expected as `select` key', branch.stmt.position())
}
}
}
c.stmts(branch.stmts)
}
return table.bool_type
}
pub fn (mut c Checker) lock_expr(mut node ast.LockExpr) table.Type {
for i in 0 .. node.lockeds.len {
c.ident(mut node.lockeds[i])
id := node.lockeds[i]
if mut id.obj is ast.Var {
if id.obj.typ.share() != .shared_t {
c.error('`$id.name` must be declared `shared` to be locked', id.pos)
}
} else {
c.error('`$id.name` is not a variable and cannot be locked', id.pos)
}
if id.name in c.locked_names {
c.error('`$id.name` is already locked', id.pos)
} else if id.name in c.rlocked_names {
c.error('`$id.name` is already read-locked', id.pos)
}
if node.is_rlock {
c.rlocked_names << id.name
} else {
c.locked_names << id.name
}
}
c.stmts(node.stmts)
if node.is_rlock {
c.rlocked_names = c.rlocked_names[..c.rlocked_names.len - node.lockeds.len]
} else {
c.locked_names = c.locked_names[..c.locked_names.len - node.lockeds.len]
}
// void for now... maybe sometime `x := lock a { a.getval() }`
return table.void_type
}
pub fn (mut c Checker) unsafe_expr(mut node ast.UnsafeExpr) table.Type {
assert !c.inside_unsafe
c.inside_unsafe = true
t := c.expr(node.expr)
c.inside_unsafe = false
return t
}
fn (mut c Checker) for_stmt(mut node ast.ForStmt) {
c.in_for_count++
prev_loop_label := c.loop_label
c.expected_type = table.bool_type
typ := c.expr(node.cond)
if !node.is_inf && typ.idx() != table.bool_type_idx && !c.pref.translated {
c.error('non-bool used as for condition', node.pos)
}
if node.cond is ast.InfixExpr {
infix := node.cond
if infix.op == .key_is {
if (infix.left is ast.Ident ||
infix.left is ast.SelectorExpr) &&
infix.right is ast.Type {
right_expr := infix.right as ast.Type
is_variable := if mut infix.left is ast.Ident {
infix.left.kind == .variable
} else {
true
}
left_type := c.expr(infix.left)
left_sym := c.table.get_type_symbol(left_type)
if is_variable {
if left_sym.kind == .sum_type {
c.smartcast_sumtype(infix.left, infix.left_type, right_expr.typ, mut
node.scope)
}
}
}
}
}
// TODO: update loop var type
// how does this work currenly?
c.check_loop_label(node.label, node.pos)
c.stmts(node.stmts)
c.loop_label = prev_loop_label
c.in_for_count--
}
pub fn (mut c Checker) if_expr(mut node ast.IfExpr) table.Type {
if_kind := if node.is_comptime { '\$if' } else { 'if' }
expr_required := c.expected_type != table.void_type
former_expected_type := c.expected_type
node.typ = table.void_type
mut nbranches_with_return := 0
mut nbranches_without_return := 0
mut should_skip := false // Whether the current branch should be skipped
mut found_branch := false // Whether a matching branch was found- skip the rest
mut is_comptime_t_is_expr := false // if `$if T is string`
for i in 0 .. node.branches.len {
mut branch := node.branches[i]
if branch.cond is ast.ParExpr {
c.error('unnecessary `()` in `$if_kind` condition, use `$if_kind expr {` instead of `$if_kind (expr) {`.',
branch.pos)
}
if !node.has_else || i < node.branches.len - 1 {
if node.is_comptime {
should_skip = c.comp_if_branch(branch.cond, branch.pos)
} else {
// check condition type is boolean
c.expected_type = table.bool_type
cond_typ := c.expr(branch.cond)
if cond_typ.idx() !in [table.bool_type_idx, table.void_type_idx] && !c.pref.translated {
// void types are skipped, because they mean the var was initialized incorrectly
// (via missing function etc)
typ_sym := c.table.get_type_symbol(cond_typ)
c.error('non-bool type `$typ_sym.name` used as if condition', branch.pos)
}
}
}
// smartcast sumtypes and interfaces when using `is`
if !node.is_comptime && branch.cond is ast.InfixExpr {
infix := branch.cond as ast.InfixExpr
if infix.op == .key_is {
right_expr := infix.right as ast.Type
left_sym := c.table.get_type_symbol(infix.left_type)
expr_type := c.expr(infix.left)
if left_sym.kind == .interface_ {
c.type_implements(right_expr.typ, expr_type, branch.pos)
} else if !c.check_types(right_expr.typ, expr_type) {
expect_str := c.table.type_to_str(right_expr.typ)
expr_str := c.table.type_to_str(expr_type)
c.error('cannot use type `$expect_str` as type `$expr_str`', branch.pos)
}
if (infix.left is ast.Ident ||
infix.left is ast.SelectorExpr) &&
infix.right is ast.Type {
is_variable := if mut infix.left is ast.Ident {
infix.left.kind == .variable
} else {
true
}
if is_variable {
if left_sym.kind in [.interface_, .sum_type] {
if infix.left is ast.Ident && left_sym.kind == .interface_ {
// TODO: rewrite interface smartcast
left := infix.left as ast.Ident
mut is_mut := false
mut sum_type_casts := []table.Type{}
if v := branch.scope.find_var(left.name) {
is_mut = v.is_mut
sum_type_casts << v.sum_type_casts
}
branch.scope.register(ast.Var{
name: left.name
typ: right_expr.typ.to_ptr()
sum_type_casts: sum_type_casts
pos: left.pos
is_used: true
is_mut: is_mut
})
// TODO: needs to be removed
node.branches[i].smartcast = true
} else {
c.smartcast_sumtype(infix.left, infix.left_type, right_expr.typ, mut
branch.scope)
}
}
}
}
}
}
if node.is_comptime { // Skip checking if needed
// smartcast field type on comptime if
if branch.cond is ast.InfixExpr {
if branch.cond.op == .key_is {
left := branch.cond.left
got_type := (branch.cond.right as ast.Type).typ
if left is ast.SelectorExpr {
c.comptime_fields_type[left.expr.str()] = got_type
} else if left is ast.Type {
is_comptime_t_is_expr = true
left_type := c.unwrap_generic(left.typ)
if left_type != got_type {
should_skip = true
}
}
}
}
cur_skip_flags := c.skip_flags
if found_branch {
c.skip_flags = true
} else if should_skip {
c.skip_flags = true
should_skip = false // Reset the value of `should_skip` for the next branch
} else {
found_branch = true // If a branch wasn't skipped, the rest must be
}
if !c.skip_flags || c.pref.output_cross_c {
c.stmts(branch.stmts)
} else if !is_comptime_t_is_expr {
node.branches[i].stmts = []
}
c.skip_flags = cur_skip_flags
} else {
c.stmts(branch.stmts)
}
if expr_required {
if branch.stmts.len > 0 && branch.stmts[branch.stmts.len - 1] is ast.ExprStmt {
mut last_expr := branch.stmts[branch.stmts.len - 1] as ast.ExprStmt
c.expected_type = former_expected_type
last_expr.typ = c.expr(last_expr.expr)
// if last_expr.typ != node.typ {
// if !c.check_types(node.typ, last_expr.typ) {
if !c.check_types(last_expr.typ, node.typ) {
if node.typ == table.void_type {
// first branch of if expression
node.is_expr = true
node.typ = last_expr.typ
continue
} else if node.typ in [table.any_flt_type, table.any_int_type] {
if node.typ == table.any_int_type {
if last_expr.typ.is_int() || last_expr.typ.is_float() {
node.typ = last_expr.typ
continue
}
} else { // node.typ == any_float
if last_expr.typ.is_float() {
node.typ = last_expr.typ
continue
}
}
}
if last_expr.typ in [table.any_flt_type, table.any_int_type] {
if last_expr.typ == table.any_int_type {
if node.typ.is_int() || node.typ.is_float() {
continue
}
} else { // expr_type == any_float
if node.typ.is_float() {
continue
}
}
}
c.error('mismatched types `${c.table.type_to_str(node.typ)}` and `${c.table.type_to_str(last_expr.typ)}`',
node.pos)
}
} else {
c.error('`$if_kind` expression requires an expression as the last statement of every branch',
branch.pos)
}
for st in branch.stmts {
// must not contain C statements
st.check_c_expr() or { c.error('`if` expression branch has $err', st.position()) }
}
}
// Also check for returns inside a comp.if's statements, even if its contents aren't parsed
if has_return := c.has_return(branch.stmts) {
if has_return {
nbranches_with_return++
} else {
nbranches_without_return++
}
}
}
if nbranches_with_return > 0 {
if nbranches_with_return == node.branches.len {
// if/else... where all branches returned
c.returns = true
}
if !node.has_else {
// `if cond { return ... }` means that when cond is false, execution continues
c.returns = false
}
if nbranches_without_return > 0 {
// some of the branches did not return
c.returns = false
}
}
// if only untyped literals were given default to int/f64
if node.typ == table.any_int_type {
node.typ = table.int_type
} else if node.typ == table.any_flt_type {
node.typ = table.f64_type
}
if expr_required && !node.has_else {
d := if node.is_comptime { '$' } else { '' }
c.error('`$if_kind` expression needs `${d}else` clause', node.pos)
}
return node.typ
}
// comp_if_branch checks the condition of a compile-time `if` branch. It returns a `bool` that
// saying whether that branch's contents should be skipped (targets a different os for example)
fn (mut c Checker) comp_if_branch(cond ast.Expr, pos token.Position) bool {
// TODO: better error messages here
match cond {
ast.BoolLiteral {
return !cond.val
}
ast.ParExpr {
return c.comp_if_branch(cond.expr, pos)
}
ast.PrefixExpr {
if cond.op != .not {
c.error('invalid `\$if` condition', cond.pos)
}
return !c.comp_if_branch(cond.right, cond.pos)
}
ast.PostfixExpr {
if cond.op != .question {
c.error('invalid \$if postfix operator', cond.pos)
} else if cond.expr is ast.Ident {
return cond.expr.name !in c.pref.compile_defines_all
} else {
c.error('invalid `\$if` condition', cond.pos)
}
}
ast.InfixExpr {
match cond.op {
.and {
l := c.comp_if_branch(cond.left, cond.pos)
r := c.comp_if_branch(cond.right, cond.pos)
return l || r // skip (return true) if at least one should be skipped
}
.logical_or {
l := c.comp_if_branch(cond.left, cond.pos)
r := c.comp_if_branch(cond.right, cond.pos)
return l && r // skip (return true) only if both should be skipped
}
.key_is, .not_is {
if (cond.left is ast.SelectorExpr ||
cond.left is ast.Type) &&
cond.right is ast.Type {
// $if method.@type is string
} else {
c.error('invalid `\$if` condition: $cond.left', cond.pos)
}
}
.eq, .ne {
if cond.left is ast.SelectorExpr && cond.right is ast.IntegerLiteral {
// $if method.args.len == 1
} else if cond.left is ast.Ident {
// $if version == 2
left_type := c.expr(cond.left)
right_type := c.expr(cond.right)
expr := c.find_definition(cond.left) or {
c.error(err, cond.left.pos)
return false
}
if !c.check_types(right_type, left_type) {
left_name := c.table.type_to_str(left_type)
right_name := c.table.type_to_str(right_type)
c.error('mismatched types `$left_name` and `$right_name`',
cond.pos)
}
// :)
// until `v.eval` is stable, I can't think of a better way to do this
different := expr.str() != cond.right.str()
return if cond.op == .eq {
different
} else {
!different
}
} else {
c.error('invalid `\$if` condition: $cond.left.type_name()', cond.pos)
}
}
else {
c.error('invalid `\$if` condition', cond.pos)
}
}
}
ast.Ident {
if cond.name in valid_comp_if_os {
return cond.name != c.pref.os.str().to_lower() // TODO hack
} else if cond.name in valid_comp_if_compilers {
return pref.cc_from_string(cond.name) != c.pref.ccompiler_type
} else if cond.name in valid_comp_if_platforms {
return false // TODO
} else if cond.name in valid_comp_if_other {
// TODO: This should probably be moved
match cond.name {
'js' { return c.pref.backend != .js }
'debug' { return !c.pref.is_debug }
'test' { return !c.pref.is_test }
'glibc' { return false } // TODO
'prealloc' { return !c.pref.prealloc }
'no_bounds_checking' { return cond.name !in c.pref.compile_defines_all }
else { return false }
}
} else if cond.name !in c.pref.compile_defines_all {
// `$if some_var {}`
typ := c.expr(cond)
if cond.obj !is ast.Var &&
cond.obj !is ast.ConstField && cond.obj !is ast.GlobalField {
c.error('unknown var: `$cond.name`', pos)
return false
}
expr := c.find_obj_definition(cond.obj) or {
c.error(err, cond.pos)
return false
}
if !c.check_types(typ, table.bool_type) {
type_name := c.table.type_to_str(typ)
c.error('non-bool type `$type_name` used as \$if condition', cond.pos)
}
// :)
// until `v.eval` is stable, I can't think of a better way to do this
return !(expr as ast.BoolLiteral).val
}
}
else {
c.error('invalid `\$if` condition', pos)
}
}
return false
}
fn (mut c Checker) find_definition(ident ast.Ident) ?ast.Expr {
match ident.kind {
.unresolved, .blank_ident { return none }
.variable, .constant { return c.find_obj_definition(ident.obj) }
.global { return error('$ident.name is a global variable') }
.function { return error('$ident.name is a function') }
}
}
fn (mut c Checker) find_obj_definition(obj ast.ScopeObject) ?ast.Expr {
// TODO: remove once we have better type inference
mut name := ''
match obj {
ast.Var, ast.ConstField, ast.GlobalField { name = obj.name }
}
mut expr := ast.Expr{}
if obj is ast.Var {
if obj.is_mut {
return error('`$name` is mut and may have changed since its definition')
}
expr = obj.expr
} else if obj is ast.ConstField {
expr = obj.expr
} else {
return error('`$name` is a global variable and is unknown at compile time')
}
if expr is ast.Ident {
return c.find_definition(expr as ast.Ident) // TODO: smartcast
}
if !expr.is_lit() {
return error('definition of `$name` is unknown at compile time')
}
return expr
}
fn (c &Checker) has_return(stmts []ast.Stmt) ?bool {
// complexity means either more match or ifs
mut has_complexity := false
for s in stmts {
if s is ast.ExprStmt {
if s.expr is ast.IfExpr || s.expr is ast.MatchExpr {
has_complexity = true
break
}
}
}
// if the inner complexity covers all paths with returns there is no need for further checks
if !has_complexity || !c.returns {
return has_top_return(stmts)
}
return none
}
pub fn (mut c Checker) postfix_expr(mut node ast.PostfixExpr) table.Type {
typ := c.expr(node.expr)
typ_sym := c.table.get_type_symbol(typ)
if !typ_sym.is_number() && typ_sym.kind !in [.byteptr, .charptr] {
c.error('invalid operation: $node.op.str() (non-numeric type `$typ_sym.name`)',
node.pos)
} else {
node.auto_locked, _ = c.fail_if_immutable(node.expr)
}
if !c.inside_unsafe && (typ.is_ptr() || typ_sym.is_pointer()) {
c.warn('pointer arithmetic is only allowed in `unsafe` blocks', node.pos)
}
return typ
}
pub fn (mut c Checker) prefix_expr(mut node ast.PrefixExpr) table.Type {
right_type := c.expr(node.right)
node.right_type = right_type
// TODO: testing ref/deref strategy
if node.op == .amp && !right_type.is_ptr() {
match node.right {
ast.IntegerLiteral { c.error('cannot take the address of an int literal',
node.pos) }
ast.BoolLiteral { c.error('cannot take the address of a bool literal', node.pos) }
ast.StringLiteral, ast.StringInterLiteral { c.error('cannot take the address of a string literal',
node.pos) }
ast.FloatLiteral { c.error('cannot take the address of a float literal', node.pos) }
ast.CharLiteral { c.error('cannot take the address of a char literal', node.pos) }
else {}
}
if mut node.right is ast.IndexExpr {
typ_sym := c.table.get_type_symbol(node.right.left_type)
mut is_mut := false
if mut node.right.left is ast.Ident {
ident := node.right.left
// TODO: temporary, remove this
ident_obj := ident.obj
if ident_obj is ast.Var {
is_mut = ident_obj.is_mut
}
}
if typ_sym.kind == .map {
c.error('cannot take the address of map values', node.right.pos)
}
if !c.inside_unsafe {
if typ_sym.kind == .array && is_mut {
c.error('cannot take the address of mutable array elements outside unsafe blocks',
node.right.pos)
}
}
}
return right_type.to_ptr()
} else if node.op == .amp && node.right !is ast.CastExpr {
return right_type.to_ptr()
}
if node.op == .mul {
if right_type.is_ptr() {
return right_type.deref()
}
if !right_type.is_pointer() {
s := c.table.type_to_str(right_type)
c.error('invalid indirect of `$s`', node.pos)
}
}
if node.op == .bit_not && !right_type.is_int() && !c.pref.translated {
c.error('operator ~ only defined on int types', node.pos)
}
if node.op == .not && right_type != table.bool_type_idx && !c.pref.translated {
c.error('! operator can only be used with bool types', node.pos)
}
if node.op == .arrow {
right := c.table.get_type_symbol(right_type)
if right.kind == .chan {
c.stmts(node.or_block.stmts)
return right.chan_info().elem_type
} else {
c.error('<- operator can only be used with `chan` types', node.pos)
}
}
return right_type
}
fn (mut c Checker) check_index_type(typ_sym &table.TypeSymbol, index_type table.Type, pos token.Position) {
index_type_sym := c.table.get_type_symbol(index_type)
// println('index expr left=$typ_sym.name $node.pos.line_nr')
// if typ_sym.kind == .array && (!(table.type_idx(index_type) in table.number_type_idxs) &&
// index_type_sym.kind != .enum_) {
if typ_sym.kind in [.array, .array_fixed, .string, .ustring] {
if !(index_type.is_number() || index_type_sym.kind == .enum_) {
type_str := if typ_sym.kind in [.string, .ustring] {
'non-integer string index `$index_type_sym.name`'
} else {
'non-integer index `$index_type_sym.name` (array type `$typ_sym.name`)'
}
c.error('$type_str', pos)
}
if index_type.has_flag(.optional) {
type_str := if typ_sym.kind in [.string, .ustring] {
'(type `$typ_sym.name`)'
} else {
'(array type `$typ_sym.name`)'
}
c.error('cannot use optional as index $type_str', pos)
}
}
}
pub fn (mut c Checker) index_expr(mut node ast.IndexExpr) table.Type {
typ := c.expr(node.left)
node.left_type = typ
typ_sym := c.table.get_final_type_symbol(typ)
if typ_sym.kind !in [.array, .array_fixed, .string, .map] && !typ.is_ptr() && !(!typ_sym.name[0].is_capital() &&
typ_sym.name.ends_with('ptr')) && !typ.has_flag(.variadic) { // byteptr, charptr etc
c.error('type `$typ_sym.name` does not support indexing', node.pos)
}
if typ_sym.kind == .string && !typ.is_ptr() && node.is_setter {
c.error('cannot assign to s[i] since V strings are immutable\n' +
'(note, that variables may be mutable but string values are always immutable, like in Go and Java)',
node.pos)
}
if !c.inside_unsafe && (typ.is_ptr() || typ.is_pointer()) {
mut is_ok := false
if mut node.left is ast.Ident {
if node.left.obj is ast.Var {
v := node.left.obj as ast.Var
// `mut param []T` function parameter
is_ok = v.is_mut && v.is_arg && !typ.deref().is_ptr()
}
}
if !is_ok && !c.pref.translated {
c.warn('pointer indexing is only allowed in `unsafe` blocks', node.pos)
}
}
if mut node.index is ast.RangeExpr { // [1..2]
if node.index.has_low {
index_type := c.expr(node.index.low)
c.check_index_type(typ_sym, index_type, node.pos)
}
if node.index.has_high {
index_type := c.expr(node.index.high)
c.check_index_type(typ_sym, index_type, node.pos)
}
// array[1..2] => array
// fixed_array[1..2] => array
if typ_sym.kind == .array_fixed {
elem_type := c.table.value_type(typ)
idx := c.table.find_or_register_array(elem_type, 1)
return table.new_type(idx)
}
return typ.set_nr_muls(0)
} else { // [1]
index_type := c.expr(node.index)
if typ_sym.kind == .map {
info := typ_sym.info as table.Map
if !c.check_types(index_type, info.key_type) {
err := c.expected_msg(index_type, info.key_type)
c.error('invalid key: $err', node.pos)
}
} else {
c.check_index_type(typ_sym, index_type, node.pos)
}
value_type := c.table.value_type(typ)
if value_type != table.void_type {
return value_type
}
}
return typ
}
// `.green` or `Color.green`
// If a short form is used, `expected_type` needs to be an enum
// with this value.
pub fn (mut c Checker) enum_val(mut node ast.EnumVal) table.Type {
typ_idx := if node.enum_name == '' {
c.expected_type.idx()
} else { //
c.table.find_type_idx(node.enum_name)
}
// println('checker: enum_val: $node.enum_name typeidx=$typ_idx')
if typ_idx == 0 {
c.error('not an enum (name=$node.enum_name) (type_idx=0)', node.pos)
return table.void_type
}
mut typ := table.new_type(typ_idx)
if c.pref.translated {
// TODO make more strict
node.typ = typ
return typ
}
if typ == table.void_type {
c.error('not an enum', node.pos)
return table.void_type
}
mut typ_sym := c.table.get_type_symbol(typ)
// println('tname=$typ_sym.name $node.pos.line_nr $c.file.path')
if typ_sym.kind == .array && node.enum_name.len == 0 {
array_info := typ_sym.info as table.Array
typ = array_info.elem_type
typ_sym = c.table.get_type_symbol(typ)
}
if typ_sym.kind != .enum_ && !c.pref.translated {
// TODO in C int fields can be compared to enums, need to handle that in C2V
c.error('expected type is not an enum (`$typ_sym.name`)', node.pos)
return table.void_type
}
if typ_sym.info !is table.Enum {
c.error('not an enum', node.pos)
return table.void_type
}
// info := typ_sym.info as table.Enum
info := typ_sym.enum_info()
// rintln('checker: x = $info.x enum val $c.expected_type $typ_sym.name')
// println(info.vals)
if node.val !in info.vals {
c.error('enum `$typ_sym.name` does not have a value `$node.val`', node.pos)
}
node.typ = typ
return typ
}
pub fn (mut c Checker) chan_init(mut node ast.ChanInit) table.Type {
if node.typ != 0 {
info := c.table.get_type_symbol(node.typ).chan_info()
node.elem_type = info.elem_type
if node.has_cap {
c.check_array_init_para_type('cap', node.cap_expr, node.pos)
}
return node.typ
} else {
c.error('`chan` of unknown type', node.pos)
return node.typ
}
}
pub fn (mut c Checker) check_dup_keys(node &ast.MapInit, i int) {
key_i := node.keys[i]
if key_i is ast.StringLiteral {
for j in 0 .. i {
key_j := node.keys[j] as ast.StringLiteral
if key_i.val == key_j.val {
c.error('duplicate key "$key_i.val" in map literal', key_i.pos)
}
}
} else if key_i is ast.IntegerLiteral {
for j in 0 .. i {
key_j := node.keys[j] as ast.IntegerLiteral
if key_i.val == key_j.val {
c.error('duplicate key "$key_i.val" in map literal', key_i.pos)
}
}
}
}
pub fn (mut c Checker) map_init(mut node ast.MapInit) table.Type {
// `x := map[string]string` - set in parser
if node.typ != 0 {
info := c.table.get_type_symbol(node.typ).map_info()
key_sym := c.table.get_type_symbol(info.key_type)
value_sym := c.table.get_type_symbol(info.value_type)
if key_sym.kind == .placeholder {
c.error('unknown type `$key_sym.name`', node.pos)
}
if value_sym.kind == .placeholder {
c.error('unknown type `$value_sym.name`', node.pos)
}
node.key_type = info.key_type
node.value_type = info.value_type
return node.typ
}
// `{'age': 20}`
key0_type := c.table.mktyp(c.expr(node.keys[0]))
val0_type := c.table.mktyp(c.expr(node.vals[0]))
mut same_key_type := true
for i, key in node.keys {
if i == 0 {
continue
}
val := node.vals[i]
key_type := c.expr(key)
val_type := c.expr(val)
if !c.check_types(key_type, key0_type) {
msg := c.expected_msg(key_type, key0_type)
c.error('invalid map key: $msg', key.position())
same_key_type = false
}
if !c.check_types(val_type, val0_type) {
msg := c.expected_msg(val_type, val0_type)
c.error('invalid map value: $msg', val.position())
}
}
if same_key_type {
for i in 1 .. node.keys.len {
c.check_dup_keys(node, i)
}
}
map_type := table.new_type(c.table.find_or_register_map(key0_type, val0_type))
node.typ = map_type
node.key_type = key0_type
node.value_type = val0_type
return map_type
}
pub fn (mut c Checker) add_error_detail(s string) {
c.error_details << s
}
pub fn (mut c Checker) warn(s string, pos token.Position) {
allow_warnings := !(c.pref.is_prod || c.pref.warns_are_errors) // allow warnings only in dev builds
c.warn_or_error(s, pos, allow_warnings) // allow warnings only in dev builds
}
pub fn (mut c Checker) error(message string, pos token.Position) {
if c.pref.translated && message.starts_with('mismatched types') {
// TODO move this
return
}
if c.pref.is_verbose {
print_backtrace()
}
msg := message.replace('`array_', '`[]')
c.warn_or_error(msg, pos, false)
}
// check_struct_signature checks if both structs has the same signature / fields for casting
fn (c Checker) check_struct_signature(from table.Struct, to table.Struct) bool {
if from.fields.len != to.fields.len {
return false
}
for _, field in from.fields {
filtered := to.fields.filter(it.name == field.name)
if filtered.len != 1 {
// field doesn't exist
return false
}
counterpart := filtered[0]
if field.typ != counterpart.typ {
// field has different tye
return false
}
if field.is_pub != counterpart.is_pub {
// field is not public while the other one is
return false
}
if field.is_mut != counterpart.is_mut {
// field is not mutable while the other one is
return false
}
}
return true
}
fn (mut c Checker) warn_or_error(message string, pos token.Position, warn bool) {
// add backtrace to issue struct, how?
// if c.pref.is_verbose {
// print_backtrace()
// }
mut details := ''
if c.error_details.len > 0 {
details = c.error_details.join('\n')
c.error_details = []
}
if warn && !c.pref.skip_warnings {
c.nr_warnings++
wrn := errors.Warning{
reporter: errors.Reporter.checker
pos: pos
file_path: c.file.path
message: message
details: details
}
c.file.warnings << wrn
c.warnings << wrn
return
}
if !warn {
if c.pref.fatal_errors {
exit(1)
}
c.nr_errors++
if pos.line_nr !in c.error_lines {
err := errors.Error{
reporter: errors.Reporter.checker
pos: pos
file_path: c.file.path
message: message
details: details
}
c.file.errors << err
c.errors << err
c.error_lines << pos.line_nr
}
}
}
// for debugging only
fn (c &Checker) fileis(s string) bool {
return c.file.path.contains(s)
}
fn (mut c Checker) sql_expr(mut node ast.SqlExpr) table.Type {
c.inside_sql = true
defer {
c.inside_sql = false
}
sym := c.table.get_type_symbol(node.table_type)
if sym.kind == .placeholder {
c.error('orm: unknown type `$sym.name`', node.pos)
return table.void_type
}
c.cur_orm_ts = sym
info := sym.info as table.Struct
fields := c.fetch_and_verify_orm_fields(info, node.pos, node.table_name)
node.fields = fields
node.table_name = sym.name
if node.has_where {
c.expr(node.where_expr)
}
if node.has_offset {
c.expr(node.offset_expr)
}
if node.has_limit {
c.expr(node.limit_expr)
}
if node.has_order {
c.expr(node.order_expr)
}
c.expr(node.db_expr)
return node.typ
}
fn (mut c Checker) sql_stmt(mut node ast.SqlStmt) table.Type {
c.inside_sql = true
defer {
c.inside_sql = false
}
if node.table_type == 0 {
c.error('orm: unknown type `$node.table_name`', node.pos)
}
sym := c.table.get_type_symbol(node.table_type)
if sym.kind == .placeholder {
c.error('orm: unknown type `$sym.name`', node.pos)
return table.void_type
}
c.cur_orm_ts = sym
info := sym.info as table.Struct
fields := c.fetch_and_verify_orm_fields(info, node.pos, node.table_name)
node.fields = fields
c.expr(node.db_expr)
if node.kind == .update {
for expr in node.update_exprs {
c.expr(expr)
}
}
c.expr(node.where_expr)
return table.void_type
}
fn (mut c Checker) fetch_and_verify_orm_fields(info table.Struct, pos token.Position, table_name string) []table.Field {
fields := info.fields.filter(it.typ in
[table.string_type, table.int_type, table.bool_type] && !it.attrs.contains('skip'))
if fields.len == 0 {
c.error('V orm: select: empty fields in `$table_name`', pos)
}
if fields[0].name != 'id' {
c.error('V orm: `id int` must be the first field in `$table_name`', pos)
}
return fields
}
fn (mut c Checker) post_process_generic_fns() {
// Loop thru each generic function concrete type.
// Check each specific fn instantiation.
for i in 0 .. c.file.generic_fns.len {
if c.table.fn_gen_types.len == 0 {
// no concrete types, so just skip:
continue
}
mut node := c.file.generic_fns[i]
c.mod = node.mod
for gen_type in c.table.fn_gen_types[node.name] {
c.cur_generic_type = gen_type
c.fn_decl(mut node)
if node.name in ['vweb.run_app', 'vweb.run'] {
c.vweb_gen_types << gen_type
}
}
c.cur_generic_type = 0
}
}
fn (mut c Checker) fn_decl(mut node ast.FnDecl) {
c.returns = false
if node.is_generic && c.cur_generic_type == 0 {
// Just remember the generic function for now.
// It will be processed later in c.post_process_generic_fns,
// after all other normal functions are processed.
// This is done so that all generic function calls can
// have a chance to populate c.table.fn_gen_types with
// the correct concrete types.
c.file.generic_fns << node
return
}
if node.language == .v && !c.is_builtin_mod {
c.check_valid_snake_case(node.name, 'function name', node.pos)
}
if node.is_method {
mut sym := c.table.get_type_symbol(node.receiver.typ)
if sym.kind == .interface_ {
c.error('interfaces cannot be used as method receiver', node.receiver_pos)
} else if sym.kind == .array && !c.is_builtin_mod && node.name == 'map' {
// TODO `node.map in array_builtin_methods`
c.error('method overrides built-in array method', node.pos)
} else if sym.kind == .sum_type && node.name == 'type_name' {
c.error('method overrides built-in sum type method', node.pos)
}
// if sym.has_method(node.name) {
// c.warn('duplicate method `$node.name`', node.pos)
// }
// needed for proper error reporting during vweb route checking
sym.methods[node.method_idx].source_fn = voidptr(node)
}
if node.language == .v {
// Make sure all types are valid
for arg in node.params {
sym := c.table.get_type_symbol(arg.typ)
if sym.kind == .placeholder ||
(sym.kind in [table.Kind.any_int, .any_float] && !c.is_builtin_mod) {
c.error('unknown type `$sym.name`', node.pos)
}
}
}
return_sym := c.table.get_type_symbol(node.return_type)
if node.language == .v &&
return_sym.kind in [.placeholder, .any_int, .any_float] && return_sym.language == .v {
c.error('unknown type `$return_sym.name`', node.pos)
}
if node.language == .v && node.is_method && node.name == 'str' {
if node.return_type != table.string_type {
c.error('.str() methods should return `string`', node.pos)
}
if node.params.len != 1 {
c.error('.str() methods should have 0 arguments', node.pos)
}
}
if node.language == .v && node.is_method && node.name in ['+', '-', '*', '%', '/', '<', '>', '==', '!='] {
if node.params.len != 2 {
c.error('operator methods should have exactly 1 argument', node.pos)
} else {
receiver_sym := c.table.get_type_symbol(node.receiver.typ)
param_sym := c.table.get_type_symbol(node.params[1].typ)
if param_sym.kind !in [.struct_, .alias] || receiver_sym.kind !in [.struct_, .alias] {
c.error('operator methods are only allowed for struct and type alias',
node.pos)
} else {
if node.receiver.typ != node.params[1].typ {
c.error('both sides of an operator must be the same type', node.pos)
} else if node.name in ['<', '>', '==', '!='] && node.return_type != table.bool_type {
c.error('operator comparison methods should return `bool`', node.pos)
}
}
}
}
// TODO c.pref.is_vet
if node.language == .v && !node.is_method && node.params.len == 0 && node.name.after('.').starts_with('test_') {
if !c.file.path.ends_with('_test.v') {
// simple heuristic
for st in node.stmts {
if st is ast.AssertStmt {
c.warn('tests will not be run, because filename does not end with `_test.v`',
node.pos)
break
}
}
}
// eprintln('> node.name: $node.name | node.return_type: $node.return_type')
if node.return_type != table.void_type_idx {
c.error('test functions should not return anything', node.pos)
}
}
c.expected_type = table.void_type
c.cur_fn = node
// Add return if `fn(...) ? {...}` have no return at end
if node.return_type != table.void_type && node.return_type.has_flag(.optional) &&
(node.stmts.len == 0 || node.stmts[node.stmts.len - 1] !is ast.Return) {
sym := c.table.get_type_symbol(node.return_type)
if sym.kind == .void {
node.stmts << ast.Return{
pos: node.pos
}
} else {
node.stmts << ast.Return{
pos: node.pos
exprs: [ast.Expr(ast.None{
pos: node.pos
})]
}
}
}
c.stmts(node.stmts)
returns := c.returns || has_top_return(node.stmts)
if node.language == .v && !node.no_body && node.return_type != table.void_type && !returns &&
node.name !in ['panic', 'exit'] {
c.error('missing return at end of function `$node.name`', node.pos)
}
c.returns = false
node.source_file = c.file
}
fn has_top_return(stmts []ast.Stmt) bool {
for stmt in stmts {
if stmt is ast.Return {
return true
} else if stmt is ast.Block {
if has_top_return(stmt.stmts) {
return true
}
} else if stmt is ast.ExprStmt {
if stmt.expr is ast.CallExpr {
if stmt.expr.name in ['panic', 'exit'] {
return true
}
}
}
}
return false
}
fn (mut c Checker) verify_vweb_params_for_method(m table.Fn) (bool, int, int) {
margs := m.params.len - 1 // first arg is the receiver/this
if m.attrs.len == 0 {
// allow non custom routed methods, with 1:1 mapping
return true, -1, margs
}
mut route_attributes := 0
for a in m.attrs {
if a.name.starts_with('/') {
route_attributes += a.name.count(':')
}
}
return route_attributes == margs, route_attributes, margs
}
fn (mut c Checker) verify_all_vweb_routes() {
if c.vweb_gen_types.len == 0 {
return
}
typ_vweb_result := c.table.find_type_idx('vweb.Result')
for vgt in c.vweb_gen_types {
sym_app := c.table.get_type_symbol(vgt)
for m in sym_app.methods {
if m.return_type == typ_vweb_result {
is_ok, nroute_attributes, nargs := c.verify_vweb_params_for_method(m)
if !is_ok {
f := &ast.FnDecl(m.source_fn)
if isnil(f) {
continue
}
if f.return_type == typ_vweb_result &&
f.receiver.typ == m.params[0].typ && f.name == m.name {
c.file = f.source_file // setup of file path for the warning
c.warn('mismatched parameters count between vweb method `${sym_app.name}.$m.name` ($nargs) and route attribute $m.attrs ($nroute_attributes)',
f.pos)
}
}
}
}
}
}