521 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			V
		
	
	
			
		
		
	
	
			521 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			V
		
	
	
module bitfield
 | 
						|
 | 
						|
/*
 | 
						|
bitfield is a module for
 | 
						|
manipulating arrays of bits, i.e. series of zeroes and ones spread across an
 | 
						|
array of storage units (unsigned 32-bit integers).
 | 
						|
 | 
						|
BitField structure
 | 
						|
------------------
 | 
						|
 | 
						|
Bit arrays are stored in data structures called 'BitField'. The structure is
 | 
						|
'opaque', i.e. its internals are not available to the end user. This module
 | 
						|
provides API (functions and methods) for accessing and modifying bit arrays.
 | 
						|
*/
 | 
						|
 | 
						|
struct BitField {
 | 
						|
mut:
 | 
						|
	size int
 | 
						|
	//field *u32
 | 
						|
	field []u32
 | 
						|
}
 | 
						|
 | 
						|
// helper functions
 | 
						|
const (
 | 
						|
	SLOT_SIZE = 32
 | 
						|
)
 | 
						|
 | 
						|
fn bitmask(bitnr int) u32 {
 | 
						|
	return u32(u32(1) << u32(bitnr % SLOT_SIZE))
 | 
						|
}
 | 
						|
 | 
						|
fn bitslot(size int) int {
 | 
						|
	return size / SLOT_SIZE
 | 
						|
}
 | 
						|
 | 
						|
fn bitget(instance BitField, bitnr int) int {
 | 
						|
	return (instance.field[bitslot(bitnr)] >> u32(bitnr % SLOT_SIZE)) & 1
 | 
						|
}
 | 
						|
 | 
						|
fn bitset(instance mut BitField, bitnr int) {
 | 
						|
	instance.field[bitslot(bitnr)] = instance.field[bitslot(bitnr)] | bitmask(bitnr)
 | 
						|
}
 | 
						|
 | 
						|
fn bitclear(instance mut BitField, bitnr int) {
 | 
						|
	instance.field[bitslot(bitnr)] = instance.field[bitslot(bitnr)] & ~bitmask(bitnr)
 | 
						|
}
 | 
						|
 | 
						|
fn bittoggle(instance mut BitField, bitnr int) {
 | 
						|
	instance.field[bitslot(bitnr)] = instance.field[bitslot(bitnr)] ^ bitmask(bitnr)
 | 
						|
}
 | 
						|
/*
 | 
						|
#define BITTEST(a, b) ((a)->field[BITSLOT(b)] & BITMASK(b))
 | 
						|
*/
 | 
						|
 | 
						|
fn min(input1 int, input2 int) int {
 | 
						|
	if input1 < input2 {
 | 
						|
		return input1
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		return input2
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
fn bitnslots(length int) int {
 | 
						|
	return (length - 1) / SLOT_SIZE + 1
 | 
						|
}
 | 
						|
 | 
						|
fn cleartail(instance mut BitField) {
 | 
						|
	tail := instance.size % SLOT_SIZE
 | 
						|
	if tail != 0 {
 | 
						|
		// create a mask for the tail
 | 
						|
		mask := u32((1 << tail) - 1)
 | 
						|
		// clear the extra bits
 | 
						|
		instance.field[bitnslots(instance.size) - 1] = instance.field[bitnslots(instance.size) - 1] & mask
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
// public functions
 | 
						|
 | 
						|
// str2bf() converts a string of characters ('0' and '1') to a bit
 | 
						|
// array. Any character different from '0' is treated as '1'.
 | 
						|
 | 
						|
pub fn str2bf(input string) BitField {
 | 
						|
	mut output := new(input.len)
 | 
						|
	for i := 0; i < input.len; i++ {
 | 
						|
		if input[i] != 48 {
 | 
						|
			output.setbit(i)
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return output
 | 
						|
}
 | 
						|
 | 
						|
// string() converts the bit array to a string of characters ('0' and '1') and
 | 
						|
// return the string
 | 
						|
 | 
						|
pub fn (input BitField) string() string {
 | 
						|
	mut output := ''
 | 
						|
	for i := 0; i < input.size; i++ {
 | 
						|
		if input.getbit(i) == 1 {
 | 
						|
			output = output + '1'
 | 
						|
		}
 | 
						|
		else {
 | 
						|
			output = output + '0'
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return output
 | 
						|
}
 | 
						|
 | 
						|
//new() creates an empty bit array of capable of storing 'size' bits.
 | 
						|
 | 
						|
pub fn new(size int) BitField {
 | 
						|
	output := BitField{
 | 
						|
		size: size
 | 
						|
		//field: *u32(calloc(bitnslots(size) * SLOT_SIZE / 8))
 | 
						|
		field: [u32(0)].repeat(bitnslots(size))
 | 
						|
	}
 | 
						|
	return output
 | 
						|
}
 | 
						|
/*
 | 
						|
pub fn del(instance *BitField) {
 | 
						|
	free(instance.field)
 | 
						|
	free(instance)
 | 
						|
}
 | 
						|
*/
 | 
						|
 | 
						|
// getbit() returns the value (0 or 1) of bit number 'bit_nr' (count from
 | 
						|
// 0)
 | 
						|
 | 
						|
pub fn (instance BitField) getbit(bitnr int) int {
 | 
						|
	if bitnr >= instance.size {return 0}
 | 
						|
	return bitget(instance, bitnr)
 | 
						|
}
 | 
						|
 | 
						|
// setbit() set bit number 'bit_nr' to 1 (count from 0)
 | 
						|
 | 
						|
pub fn (instance mut BitField) setbit(bitnr int) {
 | 
						|
	if bitnr >= instance.size {return}
 | 
						|
	bitset(mut instance, bitnr)
 | 
						|
}
 | 
						|
 | 
						|
// clearbit() clears (sets to zero) bit number 'bit_nr' (count from 0)
 | 
						|
 | 
						|
pub fn (instance mut BitField) clearbit(bitnr int) {
 | 
						|
	if bitnr >= instance.size {return}
 | 
						|
	bitclear(mut instance, bitnr)
 | 
						|
}
 | 
						|
 | 
						|
// setall() sets all bits in the array to 1
 | 
						|
 | 
						|
pub fn (instance mut BitField) setall() {
 | 
						|
	for i := 0; i < bitnslots(instance.size); i++ {
 | 
						|
		instance.field[i] = u32(-1)
 | 
						|
	}
 | 
						|
	cleartail(mut instance)
 | 
						|
}
 | 
						|
 | 
						|
// clearall() clears (sets to zero) all bits in the array
 | 
						|
 | 
						|
pub fn (instance mut BitField) clearall() {
 | 
						|
	for i := 0; i < bitnslots(instance.size); i++ {
 | 
						|
		instance.field[i] = u32(0)
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
// togglebit() change the value (from 0 to 1 or from 1 to 0) of bit
 | 
						|
// number 'bit_nr'
 | 
						|
 | 
						|
pub fn (instance mut BitField) togglebit(bitnr int) {
 | 
						|
	if bitnr >= instance.size {return}
 | 
						|
	bittoggle(mut instance, bitnr)
 | 
						|
}
 | 
						|
 | 
						|
// bfand() perform logical AND operation on every pair of bits from 'input1'
 | 
						|
// and 'input2' and return the result as a new array. If inputs differ in size,
 | 
						|
// the tail of the longer one is ignored.
 | 
						|
 | 
						|
pub fn bfand(input1 BitField, input2 BitField) BitField {
 | 
						|
	size := min(input1.size, input2.size)
 | 
						|
	bitnslots := bitnslots(size)
 | 
						|
	mut output := new(size)
 | 
						|
	mut i := 0
 | 
						|
	for i < bitnslots {
 | 
						|
		output.field[i] = input1.field[i] & input2.field[i]
 | 
						|
		i++
 | 
						|
	}
 | 
						|
	cleartail(mut output)
 | 
						|
	return output
 | 
						|
}
 | 
						|
 | 
						|
// bfnot() toggle all bits in a bit array and return the result as a new array
 | 
						|
 | 
						|
pub fn bfnot(input BitField) BitField {
 | 
						|
	size := input.size
 | 
						|
	bitnslots := bitnslots(size)
 | 
						|
	mut output := new(size)
 | 
						|
	mut i := 0
 | 
						|
	for i < bitnslots {
 | 
						|
		output.field[i] = ~input.field[i]
 | 
						|
		i++
 | 
						|
	}
 | 
						|
	cleartail(mut output)
 | 
						|
	return output
 | 
						|
}
 | 
						|
 | 
						|
// bfor() perform logical OR operation on every pair of bits from 'input1' and
 | 
						|
// 'input2' and return the result as a new array. If inputs differ in size, the
 | 
						|
// tail of the longer one is ignored.
 | 
						|
 | 
						|
pub fn bfor(input1 BitField, input2 BitField) BitField {
 | 
						|
	size := min(input1.size, input2.size)
 | 
						|
	bitnslots := bitnslots(size)
 | 
						|
	mut output := new(size)
 | 
						|
	mut i := 0
 | 
						|
	for i < bitnslots {
 | 
						|
		output.field[i] = input1.field[i] | input2.field[i]
 | 
						|
		i++
 | 
						|
	}
 | 
						|
	cleartail(mut output)
 | 
						|
	return output
 | 
						|
}
 | 
						|
 | 
						|
// bfxor(input1 BitField, input2 BitField) perform logical XOR operation on
 | 
						|
// every pair of bits from 'input1' and 'input2' and return the result as a new
 | 
						|
// array. If inputs differ in size, the tail of the longer one is ignored.
 | 
						|
 | 
						|
pub fn bfxor(input1 BitField, input2 BitField) BitField {
 | 
						|
	size := min(input1.size, input2.size)
 | 
						|
	bitnslots := bitnslots(size)
 | 
						|
	mut output := new(size)
 | 
						|
	mut i := 0
 | 
						|
	for i < bitnslots {
 | 
						|
		output.field[i] = input1.field[i] ^ input2.field[i]
 | 
						|
		i++
 | 
						|
	}
 | 
						|
	cleartail(mut output)
 | 
						|
	return output
 | 
						|
}
 | 
						|
 | 
						|
// join() concatenates two bit arrays and return the result as a new array.
 | 
						|
 | 
						|
pub fn join(input1 BitField, input2 BitField) BitField {
 | 
						|
	output_size := input1.size + input2.size
 | 
						|
	mut output := new(output_size)
 | 
						|
	// copy the first input to output as is
 | 
						|
	for i := 0; i < bitnslots(input1.size); i++ {
 | 
						|
		output.field[i] = input1.field[i]
 | 
						|
	}
 | 
						|
 | 
						|
	// find offset bit and offset slot
 | 
						|
	offset_bit := input1.size % SLOT_SIZE
 | 
						|
	offset_slot := input1.size / SLOT_SIZE
 | 
						|
 | 
						|
	for i := 0; i < bitnslots(input2.size); i++ {
 | 
						|
		output.field[i + offset_slot] =
 | 
						|
		    output.field[i + offset_slot] |
 | 
						|
		    u32(input2.field[i] << u32(offset_bit))
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If offset_bit is not zero, additional operations are needed.
 | 
						|
	 * Number of iterations depends on the nr of slots in output. Two
 | 
						|
	 * options:
 | 
						|
	 * (a) nr of slots in output is the sum of inputs' slots. In this
 | 
						|
	 * case, the nr of bits in the last slot of output is less than the
 | 
						|
	 * nr of bits in the second input (i.e. ), OR
 | 
						|
	 * (b) nr of slots of output is the sum of inputs' slots less one
 | 
						|
	 * (i.e. less iterations needed). In this case, the nr of bits in
 | 
						|
	 * the last slot of output is greater than the nr of bits in the second
 | 
						|
	 * input.
 | 
						|
	 * If offset_bit is zero, no additional copies needed.
 | 
						|
	 */
 | 
						|
	if (output_size - 1) % SLOT_SIZE < (input2.size - 1) % SLOT_SIZE {
 | 
						|
		for i := 0; i < bitnslots(input2.size); i++ {
 | 
						|
			output.field[i + offset_slot + 1] =
 | 
						|
			    output.field[i + offset_slot + 1] |
 | 
						|
			    u32(input2.field[i] >> u32(SLOT_SIZE - offset_bit))
 | 
						|
		}
 | 
						|
	} else if (output_size - 1) % SLOT_SIZE > (input2.size - 1) % SLOT_SIZE {
 | 
						|
		for i := 0; i < bitnslots(input2.size) - 1; i++ {
 | 
						|
			output.field[i + offset_slot + 1] =
 | 
						|
			    output.field[i + offset_slot + 1] |
 | 
						|
			    u32(input2.field[i] >> u32(SLOT_SIZE - offset_bit))
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return output
 | 
						|
}
 | 
						|
 | 
						|
// print(instance BitField) send the content of a bit array to stdout as a
 | 
						|
// string of characters ('0' and '1').
 | 
						|
 | 
						|
pub fn print(instance BitField) {
 | 
						|
	mut i := 0
 | 
						|
	for i < instance.size {
 | 
						|
		if instance.getbit(i) == 1 {
 | 
						|
			print('1')
 | 
						|
		}
 | 
						|
		else {
 | 
						|
			print('0')
 | 
						|
		}
 | 
						|
		i++
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
// getsize() returns the number of bits the array can hold
 | 
						|
 | 
						|
pub fn (instance BitField) getsize() int {
 | 
						|
	return instance.size
 | 
						|
}
 | 
						|
 | 
						|
// clone() create a copy of a bit array
 | 
						|
 | 
						|
pub fn clone(input BitField) BitField {
 | 
						|
	bitnslots := bitnslots(input.size)
 | 
						|
	mut output := new(input.size)
 | 
						|
	mut i := 0
 | 
						|
	for i < bitnslots {
 | 
						|
		output.field[i] = input.field[i]
 | 
						|
		i++
 | 
						|
	}
 | 
						|
	return output
 | 
						|
}
 | 
						|
 | 
						|
// cmp() compare two bit arrays bit by bit and return 'true' if they are
 | 
						|
// identical by length and contents and 'false' otherwise.
 | 
						|
 | 
						|
pub fn cmp(input1 BitField, input2 BitField) bool {
 | 
						|
	if input1.size != input2.size {return false}
 | 
						|
	for i := 0; i < bitnslots(input1.size); i++ {
 | 
						|
		if input1.field[i] != input2.field[i] {return false}
 | 
						|
	}
 | 
						|
	return true
 | 
						|
}
 | 
						|
 | 
						|
// popcount() returns the number of set bits (ones) in the array
 | 
						|
 | 
						|
pub fn (instance BitField) popcount() int {
 | 
						|
	size := instance.size
 | 
						|
	bitnslots := bitnslots(size)
 | 
						|
	tail := size % SLOT_SIZE
 | 
						|
	mut count := 0
 | 
						|
	for i := 0; i < bitnslots - 1; i++ {
 | 
						|
		for j := 0; j < SLOT_SIZE; j++ {
 | 
						|
			if u32(instance.field[i] >> u32(j)) & u32(1) == u32(1) {
 | 
						|
				count++
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
	for j := 0; j < tail; j++ {
 | 
						|
		if u32(instance.field[bitnslots - 1] >> u32(j)) & u32(1) == u32(1) {
 | 
						|
			count++
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return count
 | 
						|
}
 | 
						|
 | 
						|
// hamming () compute the Hamming distance between two bit arrays.
 | 
						|
 | 
						|
pub fn hamming (input1 BitField, input2 BitField) int {
 | 
						|
	input_xored := bfxor(input1, input2)
 | 
						|
	return input_xored.popcount()
 | 
						|
}
 | 
						|
 | 
						|
// pos() checks if the array contains a sub-array 'needle' and returns its
 | 
						|
// position if it does, -1 if it does not, and -2 on error.
 | 
						|
 | 
						|
pub fn (haystack BitField) pos(needle BitField) int {
 | 
						|
	heystack_size := haystack.size
 | 
						|
	needle_size := needle.size
 | 
						|
	diff := heystack_size - needle_size
 | 
						|
 | 
						|
	// needle longer than haystack; return error code -2
 | 
						|
	if diff < 0 {
 | 
						|
		return -2
 | 
						|
	}
 | 
						|
	for i := 0; i <= diff; i++ {
 | 
						|
		needle_candidate := haystack.slice(i, needle_size + i)
 | 
						|
		if cmp(needle_candidate, needle) {
 | 
						|
			// needle matches a sub-array of haystack; return starting position of the sub-array
 | 
						|
			return i
 | 
						|
		}
 | 
						|
	}
 | 
						|
	// nothing matched; return -1
 | 
						|
	return -1
 | 
						|
}
 | 
						|
 | 
						|
// slice() return a sub-array of bits between 'start_bit_nr' (included) and
 | 
						|
// 'end_bit_nr' (excluded)
 | 
						|
 | 
						|
pub fn (input BitField) slice(_start int, _end int) BitField {
 | 
						|
	// boundary checks
 | 
						|
	mut start := _start
 | 
						|
	mut end := _end
 | 
						|
	if end > input.size {
 | 
						|
		end = input.size // or panic?
 | 
						|
	}
 | 
						|
	if start > end {
 | 
						|
		start = end // or panic?
 | 
						|
	}
 | 
						|
 | 
						|
	mut output := new(end - start)
 | 
						|
	start_offset := start % SLOT_SIZE
 | 
						|
	end_offset := (end - 1) % SLOT_SIZE
 | 
						|
	start_slot := start / SLOT_SIZE
 | 
						|
	end_slot := (end - 1) / SLOT_SIZE
 | 
						|
	output_slots := bitnslots(end - start)
 | 
						|
 | 
						|
	if output_slots > 1 {
 | 
						|
		if start_offset != 0 {
 | 
						|
			for i := 0; i < output_slots - 1; i++ {
 | 
						|
				output.field[i] =
 | 
						|
				    u32(input.field[start_slot + i] >> u32(start_offset))
 | 
						|
				output.field[i] = output.field[i] |
 | 
						|
				    u32(input.field[start_slot + i + 1] <<
 | 
						|
				    u32(SLOT_SIZE - start_offset))
 | 
						|
			}
 | 
						|
		}
 | 
						|
		else {
 | 
						|
			for i := 0; i < output_slots - 1; i++ {
 | 
						|
				output.field[i] =
 | 
						|
				    u32(input.field[start_slot + i])
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	if start_offset > end_offset {
 | 
						|
		output.field[(end - start - 1) / SLOT_SIZE] =
 | 
						|
		    u32(input.field[end_slot - 1] >> u32(start_offset))
 | 
						|
		mut mask := u32((1 << (end_offset + 1)) - 1)
 | 
						|
		mask = input.field[end_slot] & mask
 | 
						|
		mask = u32(mask << u32(SLOT_SIZE - start_offset))
 | 
						|
		output.field[(end - start - 1) / SLOT_SIZE] =
 | 
						|
		    output.field[(end - start - 1) / SLOT_SIZE] | mask
 | 
						|
	}
 | 
						|
	else if start_offset == 0 {
 | 
						|
		mut mask := u32(0)
 | 
						|
		if end_offset == SLOT_SIZE - 1 {
 | 
						|
			mask = u32(-1)
 | 
						|
		}
 | 
						|
		else {
 | 
						|
			mask = u32(u32(1) << u32(end_offset + 1))
 | 
						|
			mask = mask - u32(1)
 | 
						|
		}
 | 
						|
		output.field[(end - start - 1) / SLOT_SIZE] =
 | 
						|
		    (input.field[end_slot] & mask)
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		mut mask := u32(((1 << (end_offset - start_offset + 1)) - 1)  << start_offset)
 | 
						|
		mask = input.field[end_slot] & mask
 | 
						|
		mask = u32(mask >> u32(start_offset))
 | 
						|
		output.field[(end - start - 1) / SLOT_SIZE] =
 | 
						|
		    output.field[(end - start - 1) / SLOT_SIZE] | mask
 | 
						|
	}
 | 
						|
	return output
 | 
						|
}
 | 
						|
 | 
						|
// reverse() reverses the order of bits in the array (swap the first with the
 | 
						|
// last, the second with the last but one and so on)
 | 
						|
 | 
						|
pub fn (instance mut BitField) reverse() BitField {
 | 
						|
	size := instance.size
 | 
						|
	bitnslots := bitnslots(size)
 | 
						|
	mut output := new(size)
 | 
						|
	for i:= 0; i < (bitnslots - 1); i++ {
 | 
						|
		for j := 0; j < SLOT_SIZE; j++ {
 | 
						|
			if u32(instance.field[i] >> u32(j)) & u32(1) == u32(1) {
 | 
						|
				bitset(mut output, size - i * SLOT_SIZE - j - 1)
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
	bits_in_last_input_slot := (size - 1) % SLOT_SIZE + 1
 | 
						|
	for j := 0; j < bits_in_last_input_slot; j++ {
 | 
						|
		if u32(instance.field[bitnslots - 1] >> u32(j)) & u32(1) == u32(1) {
 | 
						|
			bitset(mut output, bits_in_last_input_slot - j - 1)
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return output
 | 
						|
}
 | 
						|
 | 
						|
// resize changes the size of the bit array to 'new_size'
 | 
						|
pub fn (instance mut BitField) resize(new_size int) {
 | 
						|
	new_bitnslots := bitnslots(new_size)
 | 
						|
	old_size := instance.size
 | 
						|
	old_bitnslots := bitnslots(old_size)
 | 
						|
	mut field := [u32(0)].repeat(new_bitnslots)
 | 
						|
	for i := 0; i < old_bitnslots && i < new_bitnslots; i++ {
 | 
						|
		field[i] = instance.field[i]
 | 
						|
	}
 | 
						|
	instance.field = field.clone()
 | 
						|
	instance.size = new_size
 | 
						|
	if new_size < old_size && new_size % SLOT_SIZE != 0 {
 | 
						|
		cleartail(mut instance)
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
// rotate(offset int) circular-shift the bits by 'offset' positions (move
 | 
						|
// 'offset' bit to 0, 'offset+1' bit to 1, and so on)
 | 
						|
 | 
						|
pub fn (instance BitField) rotate(offset int) BitField {
 | 
						|
	/**
 | 
						|
	 * This function "cuts" the bitfield into two and swaps them.
 | 
						|
	 * If the offset is positive, the cutting point is counted from the
 | 
						|
	 * beginning of the bit array, otherwise from the end.
 | 
						|
	**/
 | 
						|
	size := instance.size
 | 
						|
	// removing extra rotations
 | 
						|
 | 
						|
	mut offset_internal := offset % size
 | 
						|
	if (offset_internal == 0) {
 | 
						|
		// nothing to shift
 | 
						|
		return instance
 | 
						|
	}
 | 
						|
	if offset_internal < 0 {
 | 
						|
		offset_internal = offset_internal + size
 | 
						|
	}
 | 
						|
 | 
						|
	first_chunk := instance.slice(0, offset_internal)
 | 
						|
	second_chunk := instance.slice(offset_internal, size)
 | 
						|
	output := join(second_chunk, first_chunk)
 | 
						|
	return output
 | 
						|
}
 |