201 lines
		
	
	
		
			6.8 KiB
		
	
	
	
		
			V
		
	
	
			
		
		
	
	
			201 lines
		
	
	
		
			6.8 KiB
		
	
	
	
		
			V
		
	
	
// Copyright (c) 2019-2020 Alexander Medvednikov. All rights reserved.
 | 
						|
// Use of this source code is governed by an MIT license
 | 
						|
// that can be found in the LICENSE file.
 | 
						|
 | 
						|
// This implementation is derived from the golang implementation
 | 
						|
// which itself is derived in part from the reference
 | 
						|
// ANSI C implementation, which carries the following notice:
 | 
						|
//
 | 
						|
//	rijndael-alg-fst.c
 | 
						|
//
 | 
						|
//	@version 3.0 (December 2000)
 | 
						|
//
 | 
						|
//	Optimised ANSI C code for the Rijndael cipher (now AES)
 | 
						|
//
 | 
						|
//	@author Vincent Rijmen <vincent.rijmen@esat.kuleuven.ac.be>
 | 
						|
//	@author Antoon Bosselaers <antoon.bosselaers@esat.kuleuven.ac.be>
 | 
						|
//	@author Paulo Barreto <paulo.barreto@Terra.com.br>
 | 
						|
//
 | 
						|
//	This code is hereby placed in the public domain.
 | 
						|
//
 | 
						|
//	THIS SOFTWARE IS PROVIDED BY THE AUTHORS ''AS IS'' AND ANY EXPRESS
 | 
						|
//	OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
 | 
						|
//	WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 | 
						|
//	ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE
 | 
						|
//	LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 | 
						|
//	CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 | 
						|
//	SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
 | 
						|
//	BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
 | 
						|
//	WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
 | 
						|
//	OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
 | 
						|
//	EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 | 
						|
//
 | 
						|
// See FIPS 197 for specification, and see Daemen and Rijmen's Rijndael submission
 | 
						|
// for implementation details.
 | 
						|
//	https://csrc.nist.gov/csrc/media/publications/fips/197/final/documents/fips-197.pdf
 | 
						|
//	https://csrc.nist.gov/archive/aes/rijndael/Rijndael-ammended.pdf
 | 
						|
 | 
						|
module aes
 | 
						|
 | 
						|
import (
 | 
						|
	encoding.binary
 | 
						|
)
 | 
						|
 | 
						|
// Encrypt one block from src into dst, using the expanded key xk.
 | 
						|
fn encrypt_block_generic(xk []u32, dst, src []byte) {
 | 
						|
	_ = src[15] // early bounds check
 | 
						|
	mut s0 := binary.big_endian_u32(src[..4])
 | 
						|
	mut s1 := binary.big_endian_u32(src.slice(4, 8))
 | 
						|
	mut s2 := binary.big_endian_u32(src.slice(8, 12))
 | 
						|
	mut s3 := binary.big_endian_u32(src.slice(12, 16))
 | 
						|
 | 
						|
	// First round just XORs input with key.
 | 
						|
	s0 ^= xk[0]
 | 
						|
	s1 ^= xk[1]
 | 
						|
	s2 ^= xk[2]
 | 
						|
	s3 ^= xk[3]
 | 
						|
 | 
						|
	// Middle rounds shuffle using tables.
 | 
						|
	// Number of rounds is set by length of expanded key.
 | 
						|
	nr := xk.len/4 - 2 // - 2: one above, one more below
 | 
						|
	mut k := 4
 | 
						|
	mut t0 := u32(0)
 | 
						|
	mut t1 := u32(0)
 | 
						|
	mut t2 := u32(0)
 | 
						|
	mut t3 := u32(0)
 | 
						|
	for r in 0..nr {
 | 
						|
		t0 = xk[k+0] ^ te0[byte(s0>>24)] ^ te1[byte(s1>>16)] ^ te2[byte(s2>>8)] ^ u32(te3[byte(s3)])
 | 
						|
		t1 = xk[k+1] ^ te0[byte(s1>>24)] ^ te1[byte(s2>>16)] ^ te2[byte(s3>>8)] ^ u32(te3[byte(s0)])
 | 
						|
		t2 = xk[k+2] ^ te0[byte(s2>>24)] ^ te1[byte(s3>>16)] ^ te2[byte(s0>>8)] ^ u32(te3[byte(s1)])
 | 
						|
		t3 = xk[k+3] ^ te0[byte(s3>>24)] ^ te1[byte(s0>>16)] ^ te2[byte(s1>>8)] ^ u32(te3[byte(s2)])
 | 
						|
		k += 4
 | 
						|
		s0 = t0
 | 
						|
		s1 = t1
 | 
						|
		s2 = t2
 | 
						|
		s3 = t3
 | 
						|
	}
 | 
						|
 | 
						|
	// Last round uses s-box directly and XORs to produce output.
 | 
						|
	s0 = s_box0[t0>>24]<<24 | s_box0[t1>>16&0xff]<<16 | u32(s_box0[t2>>8&0xff]<<8) | s_box0[t3&u32(0xff)]
 | 
						|
	s1 = s_box0[t1>>24]<<24 | s_box0[t2>>16&0xff]<<16 | u32(s_box0[t3>>8&0xff]<<8) | s_box0[t0&u32(0xff)]
 | 
						|
	s2 = s_box0[t2>>24]<<24 | s_box0[t3>>16&0xff]<<16 | u32(s_box0[t0>>8&0xff]<<8) | s_box0[t1&u32(0xff)]
 | 
						|
	s3 = s_box0[t3>>24]<<24 | s_box0[t0>>16&0xff]<<16 | u32(s_box0[t1>>8&0xff]<<8) | s_box0[t2&u32(0xff)]
 | 
						|
 | 
						|
	s0 ^= xk[k+0]
 | 
						|
	s1 ^= xk[k+1]
 | 
						|
	s2 ^= xk[k+2]
 | 
						|
	s3 ^= xk[k+3]
 | 
						|
 | 
						|
	_ = dst[15] // early bounds check
 | 
						|
	binary.big_endian_put_u32(mut dst[..4], s0)
 | 
						|
	binary.big_endian_put_u32(mut dst.slice(4, 8), s1)
 | 
						|
	binary.big_endian_put_u32(mut dst.slice(8, 12), s2)
 | 
						|
	binary.big_endian_put_u32(mut dst.slice(12, 16), s3)
 | 
						|
}
 | 
						|
 | 
						|
// Decrypt one block from src into dst, using the expanded key xk.
 | 
						|
fn decrypt_block_generic(xk []u32, dst, src []byte) {
 | 
						|
	_ = src[15] // early bounds check
 | 
						|
	mut s0 := binary.big_endian_u32(src[..4])
 | 
						|
	mut s1 := binary.big_endian_u32(src.slice(4, 8))
 | 
						|
	mut s2 := binary.big_endian_u32(src.slice(8, 12))
 | 
						|
	mut s3 := binary.big_endian_u32(src.slice(12, 16))
 | 
						|
 | 
						|
	// First round just XORs input with key.
 | 
						|
	s0 ^= xk[0]
 | 
						|
	s1 ^= xk[1]
 | 
						|
	s2 ^= xk[2]
 | 
						|
	s3 ^= xk[3]
 | 
						|
 | 
						|
	// Middle rounds shuffle using tables.
 | 
						|
	// Number of rounds is set by length of expanded key.
 | 
						|
	nr := xk.len/4 - 2 // - 2: one above, one more below
 | 
						|
	mut k := 4
 | 
						|
	mut t0 := u32(0)
 | 
						|
	mut t1 := u32(0)
 | 
						|
	mut t2 := u32(0)
 | 
						|
	mut t3 := u32(0)
 | 
						|
	for r in 0..nr {
 | 
						|
		t0 = xk[k+0] ^ td0[byte(s0>>24)] ^ td1[byte(s3>>16)] ^ td2[byte(s2>>8)] ^ u32(td3[byte(s1)])
 | 
						|
		t1 = xk[k+1] ^ td0[byte(s1>>24)] ^ td1[byte(s0>>16)] ^ td2[byte(s3>>8)] ^ u32(td3[byte(s2)])
 | 
						|
		t2 = xk[k+2] ^ td0[byte(s2>>24)] ^ td1[byte(s1>>16)] ^ td2[byte(s0>>8)] ^ u32(td3[byte(s3)])
 | 
						|
		t3 = xk[k+3] ^ td0[byte(s3>>24)] ^ td1[byte(s2>>16)] ^ td2[byte(s1>>8)] ^ u32(td3[byte(s0)])
 | 
						|
		k += 4
 | 
						|
		s0 = t0
 | 
						|
		s1 = t1
 | 
						|
		s2 = t2
 | 
						|
		s3 = t3
 | 
						|
	}
 | 
						|
 | 
						|
	// Last round uses s-box directly and XORs to produce output.
 | 
						|
	s0 = u32(s_box1[t0>>24])<<24 | u32(s_box1[t3>>16&0xff])<<16 | u32(s_box1[t2>>8&0xff]<<8) | u32(s_box1[t1&u32(0xff)])
 | 
						|
	s1 = u32(s_box1[t1>>24])<<24 | u32(s_box1[t0>>16&0xff])<<16 | u32(s_box1[t3>>8&0xff]<<8) | u32(s_box1[t2&u32(0xff)])
 | 
						|
	s2 = u32(s_box1[t2>>24])<<24 | u32(s_box1[t1>>16&0xff])<<16 | u32(s_box1[t0>>8&0xff]<<8) | u32(s_box1[t3&u32(0xff)])
 | 
						|
	s3 = u32(s_box1[t3>>24])<<24 | u32(s_box1[t2>>16&0xff])<<16 | u32(s_box1[t1>>8&0xff]<<8) | u32(s_box1[t0&u32(0xff)])
 | 
						|
 | 
						|
	s0 ^= xk[k+0]
 | 
						|
	s1 ^= xk[k+1]
 | 
						|
	s2 ^= xk[k+2]
 | 
						|
	s3 ^= xk[k+3]
 | 
						|
 | 
						|
	_ = dst[15] // early bounds check
 | 
						|
	binary.big_endian_put_u32(mut dst[..4], s0)
 | 
						|
	binary.big_endian_put_u32(mut dst.slice(4, 8), s1)
 | 
						|
	binary.big_endian_put_u32(mut dst.slice(8, 12), s2)
 | 
						|
	binary.big_endian_put_u32(mut dst.slice(12, 16), s3)
 | 
						|
}
 | 
						|
 | 
						|
// Apply s_box0 to each byte in w.
 | 
						|
fn subw(w u32) u32 {
 | 
						|
	return u32(s_box0[w>>24])<<24 |
 | 
						|
		   u32(s_box0[w>>16&0xff]<<16) |
 | 
						|
		   u32(s_box0[w>>8&0xff]<<8) |
 | 
						|
		   u32(s_box0[w&u32(0xff)])
 | 
						|
}
 | 
						|
 | 
						|
// Rotate
 | 
						|
fn rotw(w u32) u32 { return (w<<8) | (w>>24) }
 | 
						|
 | 
						|
// Key expansion algorithm. See FIPS-197, Figure 11.
 | 
						|
// Their rcon[i] is our powx[i-1] << 24.
 | 
						|
fn expand_key_generic(key []byte, enc mut []u32, dec mut []u32) {
 | 
						|
	// Encryption key setup.
 | 
						|
	mut i := 0
 | 
						|
	nk := key.len / 4
 | 
						|
	for i = 0; i < nk; i++ {
 | 
						|
		if 4*i >= key.len {
 | 
						|
			break
 | 
						|
		}
 | 
						|
		enc[i] = binary.big_endian_u32(key[4*i..])
 | 
						|
	}
 | 
						|
	
 | 
						|
	for i < enc.len {
 | 
						|
		mut t := enc[i-1]
 | 
						|
		if i%nk == 0 {
 | 
						|
			t = subw(rotw(t)) ^ u32(pow_x[i/nk-1]) << 24
 | 
						|
		} else if nk > 6 && i%nk == 4 {
 | 
						|
			t = subw(t)
 | 
						|
		}
 | 
						|
		enc[i] = enc[i-nk] ^ t
 | 
						|
		i++
 | 
						|
	}
 | 
						|
 | 
						|
	// Derive decryption key from encryption key.
 | 
						|
	// Reverse the 4-word round key sets from enc to produce dec.
 | 
						|
	// All sets but the first and last get the MixColumn transform applied.
 | 
						|
	if dec.len == 0 {
 | 
						|
		return
 | 
						|
	}
 | 
						|
	n := enc.len
 | 
						|
	for i = 0; i < n; i += 4 {
 | 
						|
		ei := n - i - 4
 | 
						|
		for j in 0..4 {
 | 
						|
			mut x := enc[ei+j]
 | 
						|
			if i > 0 && i+4 < n {
 | 
						|
				x = td0[s_box0[x>>24]] ^ td1[s_box0[x>>16&0xff]] ^ td2[s_box0[x>>8&0xff]] ^ td3[s_box0[x&u32(0xff)]]
 | 
						|
			}
 | 
						|
			dec[i+j] = x
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 |