755 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			V
		
	
	
			
		
		
	
	
			755 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			V
		
	
	
| // Copyright (c) 2019-2021 Alexander Medvednikov. All rights reserved.
 | |
| // Use of this source code is governed by an MIT license
 | |
| // that can be found in the LICENSE file.
 | |
| module builtin
 | |
| 
 | |
| import strings
 | |
| 
 | |
| // array is a struct used for denoting array types in V
 | |
| pub struct array {
 | |
| pub:
 | |
| 	element_size int // size in bytes of one element in the array.
 | |
| pub mut:
 | |
| 	data voidptr
 | |
| 	len  int // length of the array.
 | |
| 	cap  int // capacity of the array.
 | |
| }
 | |
| 
 | |
| // array.data uses a void pointer, which allows implementing arrays without generics and without generating
 | |
| // extra code for every type.
 | |
| // Internal function, used by V (`nums := []int`)
 | |
| fn __new_array(mylen int, cap int, elm_size int) array {
 | |
| 	cap_ := if cap < mylen { mylen } else { cap }
 | |
| 	arr := array{
 | |
| 		element_size: elm_size
 | |
| 		data: vcalloc(cap_ * elm_size)
 | |
| 		len: mylen
 | |
| 		cap: cap_
 | |
| 	}
 | |
| 	return arr
 | |
| }
 | |
| 
 | |
| fn __new_array_with_default(mylen int, cap int, elm_size int, val voidptr) array {
 | |
| 	cap_ := if cap < mylen { mylen } else { cap }
 | |
| 	mut arr := array{
 | |
| 		element_size: elm_size
 | |
| 		data: vcalloc(cap_ * elm_size)
 | |
| 		len: mylen
 | |
| 		cap: cap_
 | |
| 	}
 | |
| 	if val != 0 {
 | |
| 		for i in 0 .. arr.len {
 | |
| 			unsafe { arr.set_unsafe(i, val) }
 | |
| 		}
 | |
| 	}
 | |
| 	return arr
 | |
| }
 | |
| 
 | |
| fn __new_array_with_array_default(mylen int, cap int, elm_size int, val array) array {
 | |
| 	cap_ := if cap < mylen { mylen } else { cap }
 | |
| 	mut arr := array{
 | |
| 		element_size: elm_size
 | |
| 		data: vcalloc(cap_ * elm_size)
 | |
| 		len: mylen
 | |
| 		cap: cap_
 | |
| 	}
 | |
| 	for i in 0 .. arr.len {
 | |
| 		val_clone := val.clone()
 | |
| 		unsafe { arr.set_unsafe(i, &val_clone) }
 | |
| 	}
 | |
| 	return arr
 | |
| }
 | |
| 
 | |
| // Private function, used by V (`nums := [1, 2, 3]`)
 | |
| fn new_array_from_c_array(len int, cap int, elm_size int, c_array voidptr) array {
 | |
| 	cap_ := if cap < len { len } else { cap }
 | |
| 	arr := array{
 | |
| 		element_size: elm_size
 | |
| 		data: vcalloc(cap_ * elm_size)
 | |
| 		len: len
 | |
| 		cap: cap_
 | |
| 	}
 | |
| 	// TODO Write all memory functions (like memcpy) in V
 | |
| 	unsafe { C.memcpy(arr.data, c_array, len * elm_size) }
 | |
| 	return arr
 | |
| }
 | |
| 
 | |
| // Private function, used by V (`nums := [1, 2, 3] !`)
 | |
| fn new_array_from_c_array_no_alloc(len int, cap int, elm_size int, c_array voidptr) array {
 | |
| 	arr := array{
 | |
| 		element_size: elm_size
 | |
| 		data: c_array
 | |
| 		len: len
 | |
| 		cap: cap
 | |
| 	}
 | |
| 	return arr
 | |
| }
 | |
| 
 | |
| // Private function. Doubles array capacity if needed.
 | |
| [inline]
 | |
| fn (mut a array) ensure_cap(required int) {
 | |
| 	if required <= a.cap {
 | |
| 		return
 | |
| 	}
 | |
| 	mut cap := if a.cap > 0 { a.cap } else { 2 }
 | |
| 	for required > cap {
 | |
| 		cap *= 2
 | |
| 	}
 | |
| 	new_size := cap * a.element_size
 | |
| 	mut new_data := byteptr(0)
 | |
| 	if a.cap > 0 {
 | |
| 		new_data = v_realloc(a.data, new_size)
 | |
| 	} else {
 | |
| 		new_data = vcalloc(new_size)
 | |
| 	}
 | |
| 	a.data = new_data
 | |
| 	a.cap = cap
 | |
| }
 | |
| 
 | |
| // repeat returns a new array with the given array elements repeated given times.
 | |
| pub fn (a array) repeat(count int) array {
 | |
| 	if count < 0 {
 | |
| 		panic('array.repeat: count is negative: $count')
 | |
| 	}
 | |
| 	mut size := count * a.len * a.element_size
 | |
| 	if size == 0 {
 | |
| 		size = a.element_size
 | |
| 	}
 | |
| 	arr := array{
 | |
| 		element_size: a.element_size
 | |
| 		data: vcalloc(size)
 | |
| 		len: count * a.len
 | |
| 		cap: count * a.len
 | |
| 	}
 | |
| 	size_of_array := int(sizeof(array))
 | |
| 	for i in 0 .. count {
 | |
| 		if a.len > 0 && a.element_size == size_of_array {
 | |
| 			ary := array{}
 | |
| 			unsafe { C.memcpy(&ary, a.data, size_of_array) }
 | |
| 			ary_clone := ary.clone()
 | |
| 			unsafe { C.memcpy(arr.get_unsafe(i * a.len), &ary_clone, a.len * a.element_size) }
 | |
| 		} else {
 | |
| 			unsafe { C.memcpy(arr.get_unsafe(i * a.len), byteptr(a.data), a.len * a.element_size) }
 | |
| 		}
 | |
| 	}
 | |
| 	return arr
 | |
| }
 | |
| 
 | |
| // sort sorts array in-place using given `compare` function as comparator.
 | |
| pub fn (mut a array) sort_with_compare(compare voidptr) {
 | |
| 	C.qsort(mut a.data, a.len, a.element_size, compare)
 | |
| }
 | |
| 
 | |
| // insert inserts a value in the array at index `i`
 | |
| pub fn (mut a array) insert(i int, val voidptr) {
 | |
| 	$if !no_bounds_checking ? {
 | |
| 		if i < 0 || i > a.len {
 | |
| 			panic('array.insert: index out of range (i == $i, a.len == $a.len)')
 | |
| 		}
 | |
| 	}
 | |
| 	a.ensure_cap(a.len + 1)
 | |
| 	unsafe {
 | |
| 		C.memmove(a.get_unsafe(i + 1), a.get_unsafe(i), (a.len - i) * a.element_size)
 | |
| 		a.set_unsafe(i, val)
 | |
| 	}
 | |
| 	a.len++
 | |
| }
 | |
| 
 | |
| // insert_many inserts many values into the array from index `i`.
 | |
| pub fn (mut a array) insert_many(i int, val voidptr, size int) {
 | |
| 	$if !no_bounds_checking ? {
 | |
| 		if i < 0 || i > a.len {
 | |
| 			panic('array.insert_many: index out of range (i == $i, a.len == $a.len)')
 | |
| 		}
 | |
| 	}
 | |
| 	a.ensure_cap(a.len + size)
 | |
| 	elem_size := a.element_size
 | |
| 	unsafe {
 | |
| 		iptr := a.get_unsafe(i)
 | |
| 		C.memmove(a.get_unsafe(i + size), iptr, (a.len - i) * elem_size)
 | |
| 		C.memcpy(iptr, val, size * elem_size)
 | |
| 	}
 | |
| 	a.len += size
 | |
| }
 | |
| 
 | |
| // prepend prepends one value to the array.
 | |
| pub fn (mut a array) prepend(val voidptr) {
 | |
| 	a.insert(0, val)
 | |
| }
 | |
| 
 | |
| // prepend_many prepends another array to this array.
 | |
| pub fn (mut a array) prepend_many(val voidptr, size int) {
 | |
| 	a.insert_many(0, val, size)
 | |
| }
 | |
| 
 | |
| // delete deletes array element at index `i`.
 | |
| pub fn (mut a array) delete(i int) {
 | |
| 	$if !no_bounds_checking ? {
 | |
| 		if i < 0 || i >= a.len {
 | |
| 			panic('array.delete: index out of range (i == $i, a.len == $a.len)')
 | |
| 		}
 | |
| 	}
 | |
| 	// NB: if a is [12,34], a.len = 2, a.delete(0)
 | |
| 	// should move (2-0-1) elements = 1 element (the 34) forward
 | |
| 	unsafe { C.memmove(a.get_unsafe(i), a.get_unsafe(i + 1), (a.len - i - 1) * a.element_size) }
 | |
| 	a.len--
 | |
| }
 | |
| 
 | |
| // clear clears the array without deallocating the allocated data.
 | |
| pub fn (mut a array) clear() {
 | |
| 	a.len = 0
 | |
| }
 | |
| 
 | |
| // trim trims the array length to "index" without modifying the allocated data. If "index" is greater
 | |
| // than len nothing will be changed.
 | |
| pub fn (mut a array) trim(index int) {
 | |
| 	if index < a.len {
 | |
| 		a.len = index
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // we manually inline this for single operations for performance without -prod
 | |
| [inline]
 | |
| [unsafe]
 | |
| fn (a array) get_unsafe(i int) voidptr {
 | |
| 	unsafe {
 | |
| 		return byteptr(a.data) + i * a.element_size
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // Private function. Used to implement array[] operator.
 | |
| fn (a array) get(i int) voidptr {
 | |
| 	$if !no_bounds_checking ? {
 | |
| 		if i < 0 || i >= a.len {
 | |
| 			panic('array.get: index out of range (i == $i, a.len == $a.len)')
 | |
| 		}
 | |
| 	}
 | |
| 	unsafe {
 | |
| 		return byteptr(a.data) + i * a.element_size
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // Private function. Used to implement x = a[i] or { ... }
 | |
| fn (a array) get_with_check(i int) voidptr {
 | |
| 	if i < 0 || i >= a.len {
 | |
| 		return 0
 | |
| 	}
 | |
| 	unsafe {
 | |
| 		return byteptr(a.data) + i * a.element_size
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // first returns the first element of the array.
 | |
| pub fn (a array) first() voidptr {
 | |
| 	$if !no_bounds_checking ? {
 | |
| 		if a.len == 0 {
 | |
| 			panic('array.first: array is empty')
 | |
| 		}
 | |
| 	}
 | |
| 	return a.data
 | |
| }
 | |
| 
 | |
| // last returns the last element of the array.
 | |
| pub fn (a array) last() voidptr {
 | |
| 	$if !no_bounds_checking ? {
 | |
| 		if a.len == 0 {
 | |
| 			panic('array.last: array is empty')
 | |
| 		}
 | |
| 	}
 | |
| 	unsafe {
 | |
| 		return byteptr(a.data) + (a.len - 1) * a.element_size
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // pop returns the last element of the array, and removes it.
 | |
| pub fn (mut a array) pop() voidptr {
 | |
| 	// in a sense, this is the opposite of `a << x`
 | |
| 	$if !no_bounds_checking ? {
 | |
| 		if a.len == 0 {
 | |
| 			panic('array.pop: array is empty')
 | |
| 		}
 | |
| 	}
 | |
| 	new_len := a.len - 1
 | |
| 	last_elem := unsafe { byteptr(a.data) + (new_len) * a.element_size }
 | |
| 	a.len = new_len
 | |
| 	// NB: a.cap is not changed here *on purpose*, so that
 | |
| 	// further << ops on that array will be more efficient.
 | |
| 	return memdup(last_elem, a.element_size)
 | |
| }
 | |
| 
 | |
| // delete_last efficiently deletes the last element of the array.
 | |
| pub fn (mut a array) delete_last() {
 | |
| 	// copy pasting code for performance
 | |
| 	$if !no_bounds_checking ? {
 | |
| 		if a.len == 0 {
 | |
| 			panic('array.pop: array is empty')
 | |
| 		}
 | |
| 	}
 | |
| 	a.len--
 | |
| }
 | |
| 
 | |
| // slice returns an array using the same buffer as original array
 | |
| // but starting from the `start` element and ending with the element before
 | |
| // the `end` element of the original array with the length and capacity
 | |
| // set to the number of the elements in the slice.
 | |
| fn (a array) slice(start int, _end int) array {
 | |
| 	mut end := _end
 | |
| 	$if !no_bounds_checking ? {
 | |
| 		if start > end {
 | |
| 			panic('array.slice: invalid slice index ($start > $end)')
 | |
| 		}
 | |
| 		if end > a.len {
 | |
| 			panic('array.slice: slice bounds out of range ($end >= $a.len)')
 | |
| 		}
 | |
| 		if start < 0 {
 | |
| 			panic('array.slice: slice bounds out of range ($start < 0)')
 | |
| 		}
 | |
| 	}
 | |
| 	mut data := byteptr(0)
 | |
| 	unsafe {
 | |
| 		data = byteptr(a.data) + start * a.element_size
 | |
| 	}
 | |
| 	l := end - start
 | |
| 	res := array{
 | |
| 		element_size: a.element_size
 | |
| 		data: data
 | |
| 		len: l
 | |
| 		cap: l
 | |
| 	}
 | |
| 	return res
 | |
| }
 | |
| 
 | |
| // used internally for [2..4]
 | |
| fn (a array) slice2(start int, _end int, end_max bool) array {
 | |
| 	end := if end_max { a.len } else { _end }
 | |
| 	return a.slice(start, end)
 | |
| }
 | |
| 
 | |
| // clone_static returns an independent copy of a given array
 | |
| // It should be used only in -autofree generated code.
 | |
| fn (a array) clone_static() array {
 | |
| 	return a.clone()
 | |
| }
 | |
| 
 | |
| // clone returns an independent copy of a given array.
 | |
| pub fn (a &array) clone() array {
 | |
| 	mut size := a.cap * a.element_size
 | |
| 	if size == 0 {
 | |
| 		size++
 | |
| 	}
 | |
| 	mut arr := array{
 | |
| 		element_size: a.element_size
 | |
| 		data: vcalloc(size)
 | |
| 		len: a.len
 | |
| 		cap: a.cap
 | |
| 	}
 | |
| 	// Recursively clone-generated elements if array element is array type
 | |
| 	size_of_array := int(sizeof(array))
 | |
| 	if a.element_size == size_of_array {
 | |
| 		mut is_elem_array := true
 | |
| 		for i in 0 .. a.len {
 | |
| 			ar := array{}
 | |
| 			unsafe { C.memcpy(&ar, a.get_unsafe(i), size_of_array) }
 | |
| 			if ar.len > ar.cap || ar.cap <= 0 || ar.element_size <= 0 {
 | |
| 				is_elem_array = false
 | |
| 				break
 | |
| 			}
 | |
| 			ar_clone := ar.clone()
 | |
| 			unsafe { arr.set_unsafe(i, &ar_clone) }
 | |
| 		}
 | |
| 		if is_elem_array {
 | |
| 			return arr
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if !isnil(a.data) {
 | |
| 		unsafe { C.memcpy(byteptr(arr.data), a.data, a.cap * a.element_size) }
 | |
| 	}
 | |
| 	return arr
 | |
| }
 | |
| 
 | |
| fn (a &array) slice_clone(start int, _end int) array {
 | |
| 	mut end := _end
 | |
| 	$if !no_bounds_checking ? {
 | |
| 		if start > end {
 | |
| 			panic('array.slice: invalid slice index ($start > $end)')
 | |
| 		}
 | |
| 		if end > a.len {
 | |
| 			panic('array.slice: slice bounds out of range ($end >= $a.len)')
 | |
| 		}
 | |
| 		if start < 0 {
 | |
| 			panic('array.slice: slice bounds out of range ($start < 0)')
 | |
| 		}
 | |
| 	}
 | |
| 	mut data := byteptr(0)
 | |
| 	unsafe {
 | |
| 		data = byteptr(a.data) + start * a.element_size
 | |
| 	}
 | |
| 	l := end - start
 | |
| 	res := array{
 | |
| 		element_size: a.element_size
 | |
| 		data: data
 | |
| 		len: l
 | |
| 		cap: l
 | |
| 	}
 | |
| 	return res.clone()
 | |
| }
 | |
| 
 | |
| // we manually inline this for single operations for performance without -prod
 | |
| [inline]
 | |
| [unsafe]
 | |
| fn (mut a array) set_unsafe(i int, val voidptr) {
 | |
| 	unsafe { C.memcpy(byteptr(a.data) + a.element_size * i, val, a.element_size) }
 | |
| }
 | |
| 
 | |
| // Private function. Used to implement assigment to the array element.
 | |
| fn (mut a array) set(i int, val voidptr) {
 | |
| 	$if !no_bounds_checking ? {
 | |
| 		if i < 0 || i >= a.len {
 | |
| 			panic('array.set: index out of range (i == $i, a.len == $a.len)')
 | |
| 		}
 | |
| 	}
 | |
| 	unsafe { C.memcpy(byteptr(a.data) + a.element_size * i, val, a.element_size) }
 | |
| }
 | |
| 
 | |
| fn (mut a array) push(val voidptr) {
 | |
| 	a.ensure_cap(a.len + 1)
 | |
| 	unsafe { C.memmove(byteptr(a.data) + a.element_size * a.len, val, a.element_size) }
 | |
| 	a.len++
 | |
| }
 | |
| 
 | |
| // `val` is array.data
 | |
| // TODO make private, right now it's used by strings.Builder
 | |
| pub fn (mut a3 array) push_many(val voidptr, size int) {
 | |
| 	if a3.data == val && !isnil(a3.data) {
 | |
| 		// handle `arr << arr`
 | |
| 		copy := a3.clone()
 | |
| 		a3.ensure_cap(a3.len + size)
 | |
| 		unsafe {
 | |
| 			// C.memcpy(a.data, copy.data, copy.element_size * copy.len)
 | |
| 			C.memcpy(a3.get_unsafe(a3.len), copy.data, a3.element_size * size)
 | |
| 		}
 | |
| 	} else {
 | |
| 		a3.ensure_cap(a3.len + size)
 | |
| 		if !isnil(a3.data) && !isnil(val) {
 | |
| 			unsafe { C.memcpy(a3.get_unsafe(a3.len), val, a3.element_size * size) }
 | |
| 		}
 | |
| 	}
 | |
| 	a3.len += size
 | |
| }
 | |
| 
 | |
| // reverse_in_place reverses existing array data, modifying original array.
 | |
| pub fn (mut a array) reverse_in_place() {
 | |
| 	if a.len < 2 {
 | |
| 		return
 | |
| 	}
 | |
| 	unsafe {
 | |
| 		mut tmp_value := malloc(a.element_size)
 | |
| 		for i in 0 .. a.len / 2 {
 | |
| 			C.memcpy(tmp_value, byteptr(a.data) + i * a.element_size, a.element_size)
 | |
| 			C.memcpy(byteptr(a.data) + i * a.element_size, byteptr(a.data) +
 | |
| 				(a.len - 1 - i) * a.element_size, a.element_size)
 | |
| 			C.memcpy(byteptr(a.data) + (a.len - 1 - i) * a.element_size, tmp_value, a.element_size)
 | |
| 		}
 | |
| 		free(tmp_value)
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // reverse returns a new array with the elements of the original array in reverse order.
 | |
| pub fn (a array) reverse() array {
 | |
| 	if a.len < 2 {
 | |
| 		return a
 | |
| 	}
 | |
| 	mut arr := array{
 | |
| 		element_size: a.element_size
 | |
| 		data: vcalloc(a.cap * a.element_size)
 | |
| 		len: a.len
 | |
| 		cap: a.cap
 | |
| 	}
 | |
| 	for i in 0 .. a.len {
 | |
| 		unsafe { arr.set_unsafe(i, a.get_unsafe(a.len - 1 - i)) }
 | |
| 	}
 | |
| 	return arr
 | |
| }
 | |
| 
 | |
| // pub fn (a []int) free() {
 | |
| // free frees all memory occupied by the array.
 | |
| [unsafe]
 | |
| pub fn (a &array) free() {
 | |
| 	$if prealloc {
 | |
| 		return
 | |
| 	}
 | |
| 	// if a.is_slice {
 | |
| 	// return
 | |
| 	// }
 | |
| 	C.free(a.data)
 | |
| }
 | |
| 
 | |
| // str returns a string representation of the array of strings
 | |
| // => '["a", "b", "c"]'.
 | |
| pub fn (a []string) str() string {
 | |
| 	mut sb := strings.new_builder(a.len * 3)
 | |
| 	sb.write('[')
 | |
| 	for i in 0 .. a.len {
 | |
| 		val := a[i]
 | |
| 		sb.write("'")
 | |
| 		sb.write(val)
 | |
| 		sb.write("'")
 | |
| 		if i < a.len - 1 {
 | |
| 			sb.write(', ')
 | |
| 		}
 | |
| 	}
 | |
| 	sb.write(']')
 | |
| 	return sb.str()
 | |
| }
 | |
| 
 | |
| // hex returns a string with the hexadecimal representation
 | |
| // of the byte elements of the array.
 | |
| pub fn (b []byte) hex() string {
 | |
| 	mut hex := malloc(b.len * 2 + 1)
 | |
| 	mut dst_i := 0
 | |
| 	for i in b {
 | |
| 		n0 := i >> 4
 | |
| 		unsafe {
 | |
| 			hex[dst_i++] = if n0 < 10 { n0 + `0` } else { n0 + byte(87) }
 | |
| 		}
 | |
| 		n1 := i & 0xF
 | |
| 		unsafe {
 | |
| 			hex[dst_i++] = if n1 < 10 { n1 + `0` } else { n1 + byte(87) }
 | |
| 		}
 | |
| 	}
 | |
| 	unsafe {
 | |
| 		hex[dst_i] = `\0`
 | |
| 		return tos(hex, dst_i)
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // copy copies the `src` byte array elements to the `dst` byte array.
 | |
| // The number of the elements copied is the minimum of the length of both arrays.
 | |
| // Returns the number of elements copied.
 | |
| // TODO: implement for all types
 | |
| pub fn copy(dst []byte, src []byte) int {
 | |
| 	if dst.len > 0 && src.len > 0 {
 | |
| 		mut min := 0
 | |
| 		min = if dst.len < src.len { dst.len } else { src.len }
 | |
| 		unsafe { C.memcpy(byteptr(dst.data), src[..min].data, dst.element_size * min) }
 | |
| 		return min
 | |
| 	}
 | |
| 	return 0
 | |
| }
 | |
| 
 | |
| // Private function. Comparator for int type.
 | |
| fn compare_ints(a &int, b &int) int {
 | |
| 	if *a < *b {
 | |
| 		return -1
 | |
| 	}
 | |
| 	if *a > *b {
 | |
| 		return 1
 | |
| 	}
 | |
| 	return 0
 | |
| }
 | |
| 
 | |
| fn compare_ints_reverse(a &int, b &int) int {
 | |
| 	if *a > *b {
 | |
| 		return -1
 | |
| 	}
 | |
| 	if *a < *b {
 | |
| 		return 1
 | |
| 	}
 | |
| 	return 0
 | |
| }
 | |
| 
 | |
| fn compare_u64s(a &u64, b &u64) int {
 | |
| 	if *a < *b {
 | |
| 		return -1
 | |
| 	}
 | |
| 	if *a > *b {
 | |
| 		return 1
 | |
| 	}
 | |
| 	return 0
 | |
| }
 | |
| 
 | |
| fn compare_u64s_reverse(a &u64, b &u64) int {
 | |
| 	if *a > *b {
 | |
| 		return -1
 | |
| 	}
 | |
| 	if *a < *b {
 | |
| 		return 1
 | |
| 	}
 | |
| 	return 0
 | |
| }
 | |
| 
 | |
| fn compare_floats(a &f64, b &f64) int {
 | |
| 	if *a < *b {
 | |
| 		return -1
 | |
| 	}
 | |
| 	if *a > *b {
 | |
| 		return 1
 | |
| 	}
 | |
| 	return 0
 | |
| }
 | |
| 
 | |
| fn compare_floats_reverse(a &f64, b &f64) int {
 | |
| 	if *a > *b {
 | |
| 		return -1
 | |
| 	}
 | |
| 	if *a < *b {
 | |
| 		return 1
 | |
| 	}
 | |
| 	return 0
 | |
| }
 | |
| 
 | |
| // sort sorts array of int in place in ascending order.
 | |
| pub fn (mut a []int) sort() {
 | |
| 	a.sort_with_compare(compare_ints)
 | |
| }
 | |
| 
 | |
| // index returns the first index at which a given element can be found in the array
 | |
| // or -1 if the value is not found.
 | |
| pub fn (a []string) index(v string) int {
 | |
| 	for i in 0 .. a.len {
 | |
| 		if a[i] == v {
 | |
| 			return i
 | |
| 		}
 | |
| 	}
 | |
| 	return -1
 | |
| }
 | |
| 
 | |
| // reduce executes a given reducer function on each element of the array,
 | |
| // resulting in a single output value.
 | |
| pub fn (a []int) reduce(iter fn (int, int) int, accum_start int) int {
 | |
| 	mut accum_ := accum_start
 | |
| 	for i in a {
 | |
| 		accum_ = iter(accum_, i)
 | |
| 	}
 | |
| 	return accum_
 | |
| }
 | |
| 
 | |
| // grow_cap grows the array's capacity by `amount` elements.
 | |
| pub fn (mut a array) grow_cap(amount int) {
 | |
| 	a.ensure_cap(a.cap + amount)
 | |
| }
 | |
| 
 | |
| // grow_len ensures that an array has a.len + amount of length
 | |
| pub fn (mut a array) grow_len(amount int) {
 | |
| 	a.ensure_cap(a.len + amount)
 | |
| 	a.len += amount
 | |
| }
 | |
| 
 | |
| // array_eq<T> checks if two arrays contain all the same elements in the same order.
 | |
| // []int == []int (also for: i64, f32, f64, byte, string)
 | |
| /*
 | |
| fn array_eq<T>(a1, a2 []T) bool {
 | |
| 	if a1.len != a2.len {
 | |
| 		return false
 | |
| 	}
 | |
| 	for i in 0..a1.len {
 | |
| 		if a1[i] != a2[i] {
 | |
| 			return false
 | |
| 		}
 | |
| 	}
 | |
| 	return true
 | |
| }
 | |
| 
 | |
| pub fn (a []int) eq(a2 []int) bool {
 | |
| 	return array_eq(a, a2)
 | |
| }
 | |
| 
 | |
| pub fn (a []i64) eq(a2 []i64) bool {
 | |
| 	return array_eq(a, a2)
 | |
| }
 | |
| 
 | |
| 
 | |
| pub fn (a []byte) eq(a2 []byte) bool {
 | |
| 	return array_eq(a, a2)
 | |
| }
 | |
| 
 | |
| pub fn (a []f32) eq(a2 []f32) bool {
 | |
| 	return array_eq(a, a2)
 | |
| }
 | |
| */
 | |
| // eq checks if the arrays have the same elements or not.
 | |
| // TODO: make it work with all types.
 | |
| pub fn (a1 []string) eq(a2 []string) bool {
 | |
| 	// return array_eq(a, a2)
 | |
| 	if a1.len != a2.len {
 | |
| 		return false
 | |
| 	}
 | |
| 	for i in 0 .. a1.len {
 | |
| 		if a1[i] != a2[i] {
 | |
| 			return false
 | |
| 		}
 | |
| 	}
 | |
| 	return true
 | |
| }
 | |
| 
 | |
| // compare_i64 for []f64 sort_with_compare()
 | |
| // sort []i64 with quicksort
 | |
| // usage :
 | |
| // mut x := [i64(100),10,70,28,92]
 | |
| // x.sort_with_compare(compare_i64)
 | |
| // println(x)     // Sorted i64 Array
 | |
| // output:
 | |
| // [10, 28, 70, 92, 100]
 | |
| pub fn compare_i64(a &i64, b &i64) int {
 | |
| 	if *a < *b {
 | |
| 		return -1
 | |
| 	}
 | |
| 	if *a > *b {
 | |
| 		return 1
 | |
| 	}
 | |
| 	return 0
 | |
| }
 | |
| 
 | |
| // compare_f64 for []f64 sort_with_compare()
 | |
| // ref. compare_i64(...)
 | |
| pub fn compare_f64(a &f64, b &f64) int {
 | |
| 	if *a < *b {
 | |
| 		return -1
 | |
| 	}
 | |
| 	if *a > *b {
 | |
| 		return 1
 | |
| 	}
 | |
| 	return 0
 | |
| }
 | |
| 
 | |
| // compare_f32 for []f32 sort_with_compare()
 | |
| // ref. compare_i64(...)
 | |
| pub fn compare_f32(a &f32, b &f32) int {
 | |
| 	if *a < *b {
 | |
| 		return -1
 | |
| 	}
 | |
| 	if *a > *b {
 | |
| 		return 1
 | |
| 	}
 | |
| 	return 0
 | |
| }
 | |
| 
 | |
| // pointers returns a new array, where each element
 | |
| // is the address of the corresponding element in the array.
 | |
| pub fn (a array) pointers() []voidptr {
 | |
| 	mut res := []voidptr{}
 | |
| 	for i in 0 .. a.len {
 | |
| 		unsafe { res << a.get_unsafe(i) }
 | |
| 	}
 | |
| 	return res
 | |
| }
 | |
| 
 | |
| // voidptr.vbytes() - makes a V []byte structure from a C style memory buffer. NB: the data is reused, NOT copied!
 | |
| [unsafe]
 | |
| pub fn (data voidptr) vbytes(len int) []byte {
 | |
| 	res := array{
 | |
| 		element_size: 1
 | |
| 		data: data
 | |
| 		len: len
 | |
| 		cap: len
 | |
| 	}
 | |
| 	return res
 | |
| }
 | |
| 
 | |
| // byteptr.vbytes() - makes a V []byte structure from a C style memory buffer. NB: the data is reused, NOT copied!
 | |
| [unsafe]
 | |
| pub fn (data byteptr) vbytes(len int) []byte {
 | |
| 	return unsafe { voidptr(data).vbytes(len) }
 | |
| }
 |