v/vlib/builtin/linux_bare/linux_syscalls.v

432 lines
9.6 KiB
V

module builtin
enum SigIndex {
si_signo = 0x00
si_code = 0x02
si_pid = 0x04
si_uid = 0x05
si_status = 0x06
si_size = 0x80
}
enum Signo {
sighup = 1 // Hangup.
sigint = 2 // Interactive attention signal.
sigquit = 3 // Quit.
sigill = 4 // Illegal instruction.
sigtrap = 5 // Trace/breakpoint trap.
sigabrt = 6 // Abnormal termination.
sigbus = 7
sigfpe = 8 // Erroneous arithmetic operation.
sigkill = 9 // Killed.
sigusr1 = 10
sigsegv = 11 // Invalid access to memory.
sigusr2 = 12
sigpipe = 13 // Broken pipe.
sigalrm = 14 // Alarm clock.
sigterm = 15 // Termination request.
sigstkflt = 16
sigchld = 17
sigcont = 18
sigstop = 19
sigtstp = 20
sigttin = 21 // Background read from control terminal.
sigttou = 22 // Background write to control terminal.
sigurg = 23
sigxcpu = 24 // CPU time limit exceeded.
sigxfsz = 25 // File size limit exceeded.
sigvtalrm = 26 // Virtual timer expired.
sigprof = 27 // Profiling timer expired.
sigwinch = 28
sigpoll = 29
sigsys = 31
}
// List of all the errors returned by syscalls
enum Errno {
enoerror = 0x00000000
eperm = 0x00000001
enoent = 0x00000002
esrch = 0x00000003
eintr = 0x00000004
eio = 0x00000005
enxio = 0x00000006
e2big = 0x00000007
enoexec = 0x00000008
ebadf = 0x00000009
echild = 0x0000000a
eagain = 0x0000000b
enomem = 0x0000000c
eacces = 0x0000000d
efault = 0x0000000e
enotblk = 0x0000000f
ebusy = 0x00000010
eexist = 0x00000011
exdev = 0x00000012
enodev = 0x00000013
enotdir = 0x00000014
eisdir = 0x00000015
einval = 0x00000016
enfile = 0x00000017
emfile = 0x00000018
enotty = 0x00000019
etxtbsy = 0x0000001a
efbig = 0x0000001b
enospc = 0x0000001c
espipe = 0x0000001d
erofs = 0x0000001e
emlink = 0x0000001f
epipe = 0x00000020
edom = 0x00000021
erange = 0x00000022
}
enum MemProt {
prot_read = 0x1
prot_write = 0x2
prot_exec = 0x4
prot_none = 0x0
prot_growsdown = 0x01000000
prot_growsup = 0x02000000
}
enum MapFlags {
map_shared = 0x01
map_private = 0x02
map_shared_validate = 0x03
map_type = 0x0f
map_fixed = 0x10
map_file = 0x00
map_anonymous = 0x20
map_huge_shift = 26
map_huge_mask = 0x3f
}
// const (
// fcntlf_dupfd = 0x00000000
// fcntlf_exlck = 0x00000004
// fcntlf_getfd = 0x00000001
// fcntlf_getfl = 0x00000003
// fcntlf_getlk = 0x00000005
// fcntlf_getlk64 = 0x0000000c
// fcntlf_getown = 0x00000009
// fcntlf_getowner_uids = 0x00000011
// fcntlf_getown_ex = 0x00000010
// fcntlf_getsig = 0x0000000b
// fcntlf_ofd_getlk = 0x00000024
// fcntlf_ofd_setlk = 0x00000025
// fcntlf_ofd_setlkw = 0x00000026
// fcntlf_owner_pgrp = 0x00000002
// fcntlf_owner_pid = 0x00000001
// fcntlf_owner_tid = 0x00000000
// fcntlf_rdlck = 0x00000000
// fcntlf_setfd = 0x00000002
// fcntlf_setfl = 0x00000004
// fcntlf_setlk = 0x00000006
// fcntlf_setlk64 = 0x0000000d
// fcntlf_setlkw = 0x00000007
// fcntlf_setlkw64 = 0x0000000e
// fcntlf_setown = 0x00000008
// fcntlf_setown_ex = 0x0000000f
// fcntlf_setsig = 0x0000000a
// fcntlf_shlck = 0x00000008
// fcntlf_unlck = 0x00000002
// fcntlf_wrlck = 0x00000001
// fcntllock_ex = 0x00000002
// fcntllock_mand = 0x00000020
// fcntllock_nb = 0x00000004
// fcntllock_read = 0x00000040
// fcntllock_rw = 0x000000c0
// fcntllock_sh = 0x00000001
// fcntllock_un = 0x00000008
// fcntllock_write = 0x00000080
// fcntlo_accmode = 0x00000003
// fcntlo_append = 0x00000400
// fcntlo_cloexec = 0x00080000
// fcntlo_creat = 0x00000040
// fcntlo_direct = 0x00004000
// fcntlo_directory = 0x00010000
// fcntlo_dsync = 0x00001000
// fcntlo_excl = 0x00000080
// fcntlo_largefile = 0x00008000
// fcntlo_ndelay = 0x00000800
// fcntlo_noatime = 0x00040000
// fcntlo_noctty = 0x00000100
// fcntlo_nofollow = 0x00020000
// fcntlo_nonblock = 0x00000800
// fcntlo_path = 0x00200000
// fcntlo_rdonly = 0x00000000
// fcntlo_rdwr = 0x00000002
// fcntlo_trunc = 0x00000200
// fcntlo_wronly = 0x00000001
// )
/*
Paraphrased from "man 2 waitid" on Linux
Upon successful return, waitid() fills in the
following fields of the siginfo_t structure
pointed to by infop:
si_pid, offset 0x10, int index 0x04:
The process ID of the child.
si_uid: offset 0x14, int index 0x05
The real user ID of the child.
si_signo: offset 0x00, int index 0x00
Always set to SIGCHLD.
si_status: ofset 0x18, int index 0x06
1 the exit status of the child, as given to _exit(2)
(or exit(3)) (sc_sys.cld_exited)
2 the signal that caused the child to terminate, stop,
or continue.
3 The si_code field can be used to determine how to
interpret this field.
si_code, set to one of (enum Wi_si_code), offset 0x08, int index 0x02:
CLD_EXITED (child called _exit(2));
CLD_KILLED (child killed by signal);
CLD_DUMPED (child killed by signal, and dumped core);
CLD_STOPPED (child stopped by signal);
CLD_TRAPPED (traced child has trapped);
CLD_CONTINUED (child continued by SIGCONT).
*/
const (
wp_sys_wnohang = u64(0x00000001)
wp_sys_wuntraced = u64(0x00000002)
wp_sys_wstopped = u64(0x00000002)
wp_sys_wexited = u64(0x00000004)
wp_sys_wcontinued = u64(0x00000008)
wp_sys_wnowait = u64(0x01000000) // don't reap, just poll status.
wp_sys___wnothread = u64(0x20000000) // don't wait on children of other threads in this group
wp_sys___wall = u64(0x40000000) // wait on all children, regardless of type
wp_sys___wclone = u64(0x80000000) // wait only on non-sigchld children
)
// First argument to waitid:
enum WiWhich {
p_all = 0
p_pid = 1
p_pgid = 2
}
enum WiSiCode {
cld_exited = 1 // child has exited
cld_killed = 2 // child was killed
cld_dumped = 3 // child terminated abnormally
cld_trapped = 4 // traced child has trapped
cld_stopped = 5 // child has stopped
cld_continued = 6 // stopped child has continued
}
fn split_int_errno(rc_in u64) (i64, Errno) {
rc := i64(rc_in)
if rc < 0 {
return i64(-1), Errno(-rc)
}
return rc, Errno.enoerror
}
// 0 sys_read
fn sys_read(fd i64, buf &byte, count u64) (i64, Errno) {
return split_int_errno(sys_call3(0, u64(fd), u64(buf), count))
}
// 1 sys_write
fn sys_write(fd i64, buf &byte, count u64) (i64, Errno) {
return split_int_errno(sys_call3(1, u64(fd), u64(buf), count))
}
// 2 sys_open
fn sys_open(filename &byte, flags i64, mode int) (i64, Errno) {
return split_int_errno(sys_call3(2, u64(filename), u64(flags), u64(mode)))
}
// 3 sys_close
fn sys_close(fd i64) Errno {
return Errno(-i64(sys_call1(3, u64(fd))))
}
// 9 sys_mmap
fn sys_mmap(addr &byte, len u64, prot MemProt, flags MapFlags, fildes u64, off u64) (&byte, Errno) {
rc := sys_call6(9, u64(addr), len, u64(prot), u64(flags), fildes, off)
a, e := split_int_errno(rc)
return &byte(a), e
}
// 11 sys_munmap
fn sys_munmap(addr voidptr, len u64) Errno {
return Errno(-sys_call2(11, u64(addr), len))
}
// 22 sys_pipe
fn sys_pipe(filedes &int) Errno {
return Errno(sys_call1(22, u64(filedes)))
}
// 24 sys_sched_yield
fn sys_sched_yield() Errno {
return Errno(sys_call0(24))
}
// 28 sys_madvise
fn sys_madvise(addr voidptr, len u64, advice int) Errno {
return Errno(sys_call3(28, u64(addr), len, u64(advice)))
}
// 39 sys_getpid
fn sys_getpid() int {
return int(sys_call0(39))
}
// 57 sys_fork
fn sys_fork() int {
return int(sys_call0(57))
}
// 58 sys_vfork
fn sys_vfork() int {
return int(sys_call0(58))
}
// 33 sys_dup2
fn sys_dup2(oldfd int, newfd int) (i64, Errno) {
return split_int_errno(sys_call2(33, u64(oldfd), u64(newfd)))
}
// 59 sys_execve
fn sys_execve(filename &byte, argv []&byte, envp []&byte) int {
return int(sys_call3(59, u64(filename), argv.data, envp.data))
}
// 60 sys_exit
fn sys_exit(ec int) {
sys_call1(60, u64(ec))
}
// 102 sys_getuid
fn sys_getuid() int {
return int(sys_call0(102))
}
// 247 sys_waitid
fn sys_waitid(which WiWhich, pid int, infop &int, options int, ru voidptr) Errno {
return Errno(sys_call5(247, u64(which), u64(pid), u64(infop), u64(options), u64(ru)))
}
fn sys_call0(scn u64) u64 {
mut res := u64(0)
asm amd64 {
syscall
; =a (res)
; a (scn)
}
return res
}
fn sys_call1(scn u64, arg1 u64) u64 {
mut res := u64(0)
asm amd64 {
syscall
; =a (res)
; a (scn)
D (arg1)
}
return res
}
fn sys_call2(scn u64, arg1 u64, arg2 u64) u64 {
mut res := u64(0)
asm amd64 {
syscall
; =a (res)
; a (scn)
D (arg1)
S (arg2)
}
return res
}
fn sys_call3(scn u64, arg1 u64, arg2 u64, arg3 u64) u64 {
mut res := u64(0)
asm amd64 {
syscall
; =a (res)
; a (scn)
D (arg1)
S (arg2)
d (arg3)
}
return res
}
fn sys_call4(scn u64, arg1 u64, arg2 u64, arg3 u64, arg4 u64) u64 {
mut res := u64(0)
asm amd64 {
mov r10, arg4
syscall
; =a (res)
; a (scn)
D (arg1)
S (arg2)
d (arg3)
r (arg4)
; r10
}
return res
}
fn sys_call5(scn u64, arg1 u64, arg2 u64, arg3 u64, arg4 u64, arg5 u64) u64 {
mut res := u64(0)
asm amd64 {
mov r10, arg4
mov r8, arg5
syscall
; =a (res)
; a (scn)
D (arg1)
S (arg2)
d (arg3)
r (arg4)
r (arg5)
; r10
r8
}
return res
}
fn sys_call6(scn u64, arg1 u64, arg2 u64, arg3 u64, arg4 u64, arg5 u64, arg6 u64) u64 {
mut res := u64(0)
asm amd64 {
mov r10, arg4
mov r8, arg5
mov r9, arg6
syscall
; =a (res)
; a (scn)
D (arg1)
S (arg2)
d (arg3)
r (arg4)
r (arg5)
r (arg6)
; r10
r8
r9
}
return res
}
asm amd64 {
.globl _start
_start:
call main
mov rax, 60
xor rdi, rdi
syscall
ret
}