282 lines
6.2 KiB
V
282 lines
6.2 KiB
V
// Copyright (c) 2019-2021 Alexander Medvednikov. All rights reserved.
|
|
// Use of this source code is governed by an MIT license
|
|
// that can be found in the LICENSE file.
|
|
module math
|
|
|
|
// TODO : The commented out functions need either a native V implementation, a
|
|
// JS specific implementation, or use some other JS math library, such as
|
|
// https://github.com/josdejong/mathjs
|
|
|
|
// Replaces C.fabs
|
|
fn JS.Math.abs(x f64) f64
|
|
|
|
fn JS.Math.acos(x f64) f64
|
|
fn JS.Math.asin(x f64) f64
|
|
fn JS.Math.atan(x f64) f64
|
|
fn JS.Math.atan2(y f64, x f64) f64
|
|
fn JS.Math.cbrt(x f64) f64
|
|
fn JS.Math.ceil(x f64) f64
|
|
fn JS.Math.cos(x f64) f64
|
|
fn JS.Math.cosh(x f64) f64
|
|
|
|
// fn JS.Math.erf(x f64) f64 // Not in standard JS Math object
|
|
// fn JS.Math.erfc(x f64) f64 // Not in standard JS Math object
|
|
fn JS.Math.exp(x f64) f64
|
|
|
|
// fn JS.Math.exp2(x f64) f64 // Not in standard JS Math object
|
|
fn JS.Math.floor(x f64) f64
|
|
|
|
// fn JS.Math.fmod(x f64, y f64) f64 // Not in standard JS Math object
|
|
// fn JS.Math.hypot(x f64, y f64) f64 // Not in standard JS Math object
|
|
fn JS.Math.log(x f64) f64
|
|
|
|
// fn JS.Math.log2(x f64) f64 // Not in standard JS Math object
|
|
// fn JS.Math.log10(x f64) f64 // Not in standard JS Math object
|
|
// fn JS.Math.lgamma(x f64) f64 // Not in standard JS Math object
|
|
fn JS.Math.pow(x f64, y f64) f64
|
|
fn JS.Math.round(x f64) f64
|
|
fn JS.Math.sin(x f64) f64
|
|
fn JS.Math.sinh(x f64) f64
|
|
fn JS.Math.sqrt(x f64) f64
|
|
|
|
// fn JS.Math.tgamma(x f64) f64 // Not in standard JS Math object
|
|
fn JS.Math.tan(x f64) f64
|
|
fn JS.Math.tanh(x f64) f64
|
|
fn JS.Math.trunc(x f64) f64
|
|
|
|
// NOTE
|
|
// When adding a new function, please make sure it's in the right place.
|
|
// All functions are sorted alphabetically.
|
|
|
|
// Returns the absolute value.
|
|
[inline]
|
|
pub fn abs(a f64) f64 {
|
|
return JS.Math.abs(a)
|
|
}
|
|
|
|
// acos calculates inverse cosine (arccosine).
|
|
[inline]
|
|
pub fn acos(a f64) f64 {
|
|
return JS.Math.acos(a)
|
|
}
|
|
|
|
// asin calculates inverse sine (arcsine).
|
|
[inline]
|
|
pub fn asin(a f64) f64 {
|
|
return JS.Math.asin(a)
|
|
}
|
|
|
|
// atan calculates inverse tangent (arctangent).
|
|
[inline]
|
|
pub fn atan(a f64) f64 {
|
|
return JS.Math.atan(a)
|
|
}
|
|
|
|
// atan2 calculates inverse tangent with two arguments, returns the angle between the X axis and the point.
|
|
[inline]
|
|
pub fn atan2(a f64, b f64) f64 {
|
|
return JS.Math.atan2(a, b)
|
|
}
|
|
|
|
// cbrt calculates cubic root.
|
|
[inline]
|
|
pub fn cbrt(a f64) f64 {
|
|
return JS.Math.cbrt(a)
|
|
}
|
|
|
|
// ceil returns the nearest f64 greater or equal to the provided value.
|
|
[inline]
|
|
pub fn ceil(a f64) f64 {
|
|
return JS.Math.ceil(a)
|
|
}
|
|
|
|
// cos calculates cosine.
|
|
[inline]
|
|
pub fn cos(a f64) f64 {
|
|
return JS.Math.cos(a)
|
|
}
|
|
|
|
// cosf calculates cosine. (float32). This doesn't exist in JS
|
|
[inline]
|
|
pub fn cosf(a f32) f32 {
|
|
return f32(JS.Math.cos(a))
|
|
}
|
|
|
|
// cosh calculates hyperbolic cosine.
|
|
[inline]
|
|
pub fn cosh(a f64) f64 {
|
|
return JS.Math.cosh(a)
|
|
}
|
|
|
|
// exp calculates exponent of the number (math.pow(math.E, a)).
|
|
[inline]
|
|
pub fn exp(a f64) f64 {
|
|
mut res := 0.0
|
|
#res.val = Math.exp(a)
|
|
|
|
return res
|
|
}
|
|
|
|
// exp2 returns the base-2 exponential function of a (math.pow(2, a)).
|
|
[inline]
|
|
pub fn exp2(a f64) f64 {
|
|
return 0
|
|
// return JS.Math.exp2(a)
|
|
}
|
|
|
|
// floor returns the nearest f64 lower or equal of the provided value.
|
|
[inline]
|
|
pub fn floor(a f64) f64 {
|
|
return JS.Math.floor(a)
|
|
}
|
|
|
|
// fmod returns the floating-point remainder of number / denom (rounded towards zero):
|
|
[inline]
|
|
pub fn fmod(x f64, y f64) f64 {
|
|
#let tmp
|
|
#let tmp2
|
|
#let p = 0
|
|
#let pY = 0
|
|
#let l = 0.0
|
|
#let l2 = 0.0
|
|
#tmp = x.toExponential().match(/^.\.?(.*)e(.+)$/)
|
|
#p = parseInt(tmp[2], 10) - (tmp[1] + '').length
|
|
#tmp = y.toExponential().match(/^.\.?(.*)e(.+)$/)
|
|
#pY = parseInt(tmp[2], 10) - (tmp[1] + '').length
|
|
#if (pY > p) {
|
|
#p = pY
|
|
#}
|
|
#tmp2 = (x % y)
|
|
#if (p < -100 || p > 20) {
|
|
// toFixed will give an out of bound error so we fix it like this:
|
|
#l = Math.round(Math.log(tmp2) / Math.log(10))
|
|
#l2 = Math.pow(10, l)
|
|
#return new builtin.f64((tmp2 / l2).toFixed(l - p) * l2)
|
|
#} else {
|
|
#return new builtin.f64(parseFloat(tmp2.toFixed(-p)))
|
|
#}
|
|
|
|
return 0.0
|
|
// return JS.Math.fmod(a, b)
|
|
}
|
|
|
|
// gamma computes the gamma function value
|
|
[inline]
|
|
pub fn gamma(a f64) f64 {
|
|
return 0
|
|
// return JS.Math.tgamma(a)
|
|
}
|
|
|
|
// Returns hypotenuse of a right triangle.
|
|
[inline]
|
|
pub fn hypot(a f64, b f64) f64 {
|
|
return 0
|
|
// return JS.Math.hypot(a, b)
|
|
}
|
|
|
|
// log calculates natural (base-e) logarithm of the provided value.
|
|
[inline]
|
|
pub fn log(a f64) f64 {
|
|
return JS.Math.log(a)
|
|
}
|
|
|
|
// log2 calculates base-2 logarithm of the provided value.
|
|
[inline]
|
|
pub fn log2(a f64) f64 {
|
|
return 0
|
|
// return JS.Math.log2(a)
|
|
}
|
|
|
|
// log10 calculates the common (base-10) logarithm of the provided value.
|
|
[inline]
|
|
pub fn log10(a f64) f64 {
|
|
return 0.0
|
|
// return JS.Math.log10(a)
|
|
}
|
|
|
|
// log_gamma computes the log-gamma function value
|
|
[inline]
|
|
pub fn log_gamma(a f64) f64 {
|
|
return 0
|
|
// return JS.Math.lgamma(a)
|
|
}
|
|
|
|
// log_n calculates base-N logarithm of the provided value.
|
|
[inline]
|
|
pub fn log_n(a f64, b f64) f64 {
|
|
return JS.Math.log(a) / JS.Math.log(b)
|
|
}
|
|
|
|
// pow returns base raised to the provided power.
|
|
[inline]
|
|
pub fn pow(a f64, b f64) f64 {
|
|
return JS.Math.pow(a, b)
|
|
}
|
|
|
|
// powf returns base raised to the provided power. (float32)
|
|
[inline]
|
|
pub fn powf(a f32, b f32) f32 {
|
|
return f32(JS.Math.pow(a, b))
|
|
}
|
|
|
|
// round returns the integer nearest to the provided value.
|
|
[inline]
|
|
pub fn round(f f64) f64 {
|
|
return JS.Math.round(f)
|
|
}
|
|
|
|
// sin calculates sine.
|
|
[inline]
|
|
pub fn sin(a f64) f64 {
|
|
return JS.Math.sin(a)
|
|
}
|
|
|
|
// sinf calculates sine. (float32)
|
|
[inline]
|
|
pub fn sinf(a f32) f32 {
|
|
return f32(JS.Math.sin(a))
|
|
}
|
|
|
|
// sinh calculates hyperbolic sine.
|
|
[inline]
|
|
pub fn sinh(a f64) f64 {
|
|
return JS.Math.sinh(a)
|
|
}
|
|
|
|
// sqrt calculates square-root of the provided value.
|
|
[inline]
|
|
pub fn sqrt(a f64) f64 {
|
|
return JS.Math.sqrt(a)
|
|
}
|
|
|
|
// sqrtf calculates square-root of the provided value. (float32)
|
|
[inline]
|
|
pub fn sqrtf(a f32) f32 {
|
|
return f32(JS.Math.sqrt(a))
|
|
}
|
|
|
|
// tan calculates tangent.
|
|
[inline]
|
|
pub fn tan(a f64) f64 {
|
|
return JS.Math.tan(a)
|
|
}
|
|
|
|
// tanf calculates tangent. (float32)
|
|
[inline]
|
|
pub fn tanf(a f32) f32 {
|
|
return f32(JS.Math.tan(a))
|
|
}
|
|
|
|
// tanh calculates hyperbolic tangent.
|
|
[inline]
|
|
pub fn tanh(a f64) f64 {
|
|
return JS.Math.tanh(a)
|
|
}
|
|
|
|
// trunc rounds a toward zero, returning the nearest integral value that is not
|
|
// larger in magnitude than a.
|
|
[inline]
|
|
pub fn trunc(a f64) f64 {
|
|
return JS.Math.trunc(a)
|
|
}
|