v/vlib/math/fractions/approximations.v

120 lines
3.6 KiB
V

// Copyright (c) 2019-2020 Alexander Medvednikov. All rights reserved.
// Use of this source code is governed by an MIT license
// that can be found in the LICENSE file.
module fractions
import math
const (
default_eps = 1.0e-4
max_iterations = 50
zero = fraction(0, 1)
)
// ------------------------------------------------------------------------
// Unwrapped evaluation methods for fast evaluation of continued fractions.
// ------------------------------------------------------------------------
// We need these functions because the evaluation of continued fractions
// always has to be done from the end. Also, the numerator-denominator pairs
// are generated from front to end. This means building a result from a
// previous one isn't possible. So we need unrolled versions to ensure that
// we don't take too much of a performance penalty by calling eval_cf
// several times.
// ------------------------------------------------------------------------
// eval_1 returns the result of evaluating a continued fraction series of length 1
fn eval_1(whole i64, d []i64) Fraction {
return fraction(whole * d[0] + 1, d[0])
}
// eval_2 returns the result of evaluating a continued fraction series of length 2
fn eval_2(whole i64, d []i64) Fraction {
den := d[0] * d[1] + 1
return fraction(whole * den + d[1], den)
}
// eval_3 returns the result of evaluating a continued fraction series of length 3
fn eval_3(whole i64, d []i64) Fraction {
d1d2_plus_n2 := d[1] * d[2] + 1
den := d[0] * d1d2_plus_n2 + d[2]
return fraction(whole * den + d1d2_plus_n2, den)
}
// eval_cf evaluates a continued fraction series and returns a Fraction.
fn eval_cf(whole i64, den []i64) Fraction {
count := den.len
// Offload some small-scale calculations
// to dedicated functions
match count {
1 {
return eval_1(whole, den)
}
2 {
return eval_2(whole, den)
}
3 {
return eval_3(whole, den)
}
else {
last := count - 1
mut n := i64(1)
mut d := den[last]
// The calculations are done from back to front
for index := count - 2; index >= 0; index-- {
t := d
d = den[index] * d + n
n = t
}
return fraction(d * whole + n, d)
}
}
}
// approximate returns a Fraction that approcimates the given value to
// within the default epsilon value (1.0e-4). This means the result will
// be accurate to 3 places after the decimal.
pub fn approximate(val f64) Fraction {
return approximate_with_eps(val, default_eps)
}
// approximate_with_eps returns a Fraction
pub fn approximate_with_eps(val f64, eps f64) Fraction {
if val == 0.0 {
return zero
}
if eps < 0.0 {
panic('Epsilon value cannot be negative.')
}
if math.fabs(val) > math.max_i64 {
panic('Value out of range.')
}
// The integer part is separated first. Then we process the fractional
// part to generate numerators and denominators in tandem.
whole := i64(val)
mut frac := val - f64(whole)
// Quick exit for integers
if frac == 0.0 {
return fraction(whole, 1)
}
mut d := []i64{}
mut partial := zero
// We must complete the approximation within the maximum number of
// itertations allowed. If we can't panic.
// Empirically tested: the hardest constant to approximate is the
// golden ratio (math.phi) and for f64s, it only needs 38 iterations.
for _ in 0 .. max_iterations {
// We calculate the reciprocal. That's why the numerator is
// always 1.
frac = 1.0 / frac
den := i64(frac)
d << den
// eval_cf is called often so it needs to be performant
partial = eval_cf(whole, d)
// Check if we're done
if math.fabs(val - partial.f64()) < eps {
return partial
}
frac -= f64(den)
}
panic("Couldn\'t converge. Please create an issue on https://github.com/vlang/v")
}