230 lines
		
	
	
		
			6.5 KiB
		
	
	
	
		
			V
		
	
	
			
		
		
	
	
			230 lines
		
	
	
		
			6.5 KiB
		
	
	
	
		
			V
		
	
	
module edwards25519
 | 
						|
 | 
						|
import sync
 | 
						|
 | 
						|
struct BasepointTablePrecomp {
 | 
						|
mut:
 | 
						|
	table    []AffineLookupTable
 | 
						|
	initonce sync.Once
 | 
						|
}
 | 
						|
 | 
						|
// basepoint_table is a set of 32 affineLookupTables, where table i is generated
 | 
						|
// from 256i * basepoint. It is precomputed the first time it's used.
 | 
						|
fn basepoint_table() []AffineLookupTable {
 | 
						|
	mut bpt := &BasepointTablePrecomp{
 | 
						|
		table: []AffineLookupTable{len: 32}
 | 
						|
		initonce: sync.new_once()
 | 
						|
	}
 | 
						|
 | 
						|
	// replaced to use do_with_param on newest sync lib
 | 
						|
	/*
 | 
						|
	bpt.initonce.do(fn [mut bpt] () {
 | 
						|
		mut p := new_generator_point()
 | 
						|
		for i := 0; i < 32; i++ {
 | 
						|
			bpt.table[i].from_p3(p)
 | 
						|
			for j := 0; j < 8; j++ {
 | 
						|
				p.add(p, p)
 | 
						|
			}
 | 
						|
		}
 | 
						|
	})*/
 | 
						|
	bpt.initonce.do_with_param(fn (mut o BasepointTablePrecomp) {
 | 
						|
		mut p := new_generator_point()
 | 
						|
		for i := 0; i < 32; i++ {
 | 
						|
			o.table[i].from_p3(p)
 | 
						|
			for j := 0; j < 8; j++ {
 | 
						|
				p.add(p, p)
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}, bpt)
 | 
						|
	return bpt.table
 | 
						|
}
 | 
						|
 | 
						|
// scalar_base_mult sets v = x * B, where B is the canonical generator, and
 | 
						|
// returns v.
 | 
						|
//
 | 
						|
// The scalar multiplication is done in constant time.
 | 
						|
pub fn (mut v Point) scalar_base_mult(mut x Scalar) Point {
 | 
						|
	mut bpt_table := basepoint_table()
 | 
						|
 | 
						|
	// Write x = sum(x_i * 16^i) so  x*B = sum( B*x_i*16^i )
 | 
						|
	// as described in the Ed25519 paper
 | 
						|
	//
 | 
						|
	// Group even and odd coefficients
 | 
						|
	// x*B     = x_0*16^0*B + x_2*16^2*B + ... + x_62*16^62*B
 | 
						|
	//         + x_1*16^1*B + x_3*16^3*B + ... + x_63*16^63*B
 | 
						|
	// x*B     = x_0*16^0*B + x_2*16^2*B + ... + x_62*16^62*B
 | 
						|
	//    + 16*( x_1*16^0*B + x_3*16^2*B + ... + x_63*16^62*B)
 | 
						|
	//
 | 
						|
	// We use a lookup table for each i to get x_i*16^(2*i)*B
 | 
						|
	// and do four doublings to multiply by 16.
 | 
						|
	digits := x.signed_radix16()
 | 
						|
 | 
						|
	mut multiple := AffineCached{}
 | 
						|
	mut tmp1 := ProjectiveP1{}
 | 
						|
	mut tmp2 := ProjectiveP2{}
 | 
						|
 | 
						|
	// Accumulate the odd components first
 | 
						|
	v.set(new_identity_point())
 | 
						|
	for i := 1; i < 64; i += 2 {
 | 
						|
		bpt_table[i / 2].select_into(mut multiple, digits[i])
 | 
						|
		tmp1.add_affine(v, multiple)
 | 
						|
		v.from_p1(tmp1)
 | 
						|
	}
 | 
						|
 | 
						|
	// Multiply by 16
 | 
						|
	tmp2.from_p3(v) // tmp2 =    v in P2 coords
 | 
						|
	tmp1.double(tmp2) // tmp1 =  2*v in P1xP1 coords
 | 
						|
	tmp2.from_p1(tmp1) // tmp2 =  2*v in P2 coords
 | 
						|
	tmp1.double(tmp2) // tmp1 =  4*v in P1xP1 coords
 | 
						|
	tmp2.from_p1(tmp1) // tmp2 =  4*v in P2 coords
 | 
						|
	tmp1.double(tmp2) // tmp1 =  8*v in P1xP1 coords
 | 
						|
	tmp2.from_p1(tmp1) // tmp2 =  8*v in P2 coords
 | 
						|
	tmp1.double(tmp2) // tmp1 = 16*v in P1xP1 coords
 | 
						|
	v.from_p1(tmp1) // now v = 16*(odd components)
 | 
						|
 | 
						|
	// Accumulate the even components
 | 
						|
	for j := 0; j < 64; j += 2 {
 | 
						|
		bpt_table[j / 2].select_into(mut multiple, digits[j])
 | 
						|
		tmp1.add_affine(v, multiple)
 | 
						|
		v.from_p1(tmp1)
 | 
						|
	}
 | 
						|
 | 
						|
	return v
 | 
						|
}
 | 
						|
 | 
						|
// scalar_mult sets v = x * q, and returns v.
 | 
						|
//
 | 
						|
// The scalar multiplication is done in constant time.
 | 
						|
pub fn (mut v Point) scalar_mult(mut x Scalar, q Point) Point {
 | 
						|
	check_initialized(q)
 | 
						|
 | 
						|
	mut table := ProjLookupTable{}
 | 
						|
	table.from_p3(q)
 | 
						|
 | 
						|
	// Write x = sum(x_i * 16^i)
 | 
						|
	// so  x*Q = sum( Q*x_i*16^i )
 | 
						|
	//         = Q*x_0 + 16*(Q*x_1 + 16*( ... + Q*x_63) ... )
 | 
						|
	//           <------compute inside out---------
 | 
						|
	//
 | 
						|
	// We use the lookup table to get the x_i*Q values
 | 
						|
	// and do four doublings to compute 16*Q
 | 
						|
	digits := x.signed_radix16()
 | 
						|
 | 
						|
	// Unwrap first loop iteration to save computing 16*identity
 | 
						|
	mut multiple := ProjectiveCached{}
 | 
						|
	mut tmp1 := ProjectiveP1{}
 | 
						|
	mut tmp2 := ProjectiveP2{}
 | 
						|
	table.select_into(mut multiple, digits[63])
 | 
						|
 | 
						|
	v.set(new_identity_point())
 | 
						|
	tmp1.add(v, multiple) // tmp1 = x_63*Q in P1xP1 coords
 | 
						|
	for i := 62; i >= 0; i-- {
 | 
						|
		tmp2.from_p1(tmp1) // tmp2 =    (prev) in P2 coords
 | 
						|
		tmp1.double(tmp2) // tmp1 =  2*(prev) in P1xP1 coords
 | 
						|
		tmp2.from_p1(tmp1) // tmp2 =  2*(prev) in P2 coords
 | 
						|
		tmp1.double(tmp2) // tmp1 =  4*(prev) in P1xP1 coords
 | 
						|
		tmp2.from_p1(tmp1) // tmp2 =  4*(prev) in P2 coords
 | 
						|
		tmp1.double(tmp2) // tmp1 =  8*(prev) in P1xP1 coords
 | 
						|
		tmp2.from_p1(tmp1) // tmp2 =  8*(prev) in P2 coords
 | 
						|
		tmp1.double(tmp2) // tmp1 = 16*(prev) in P1xP1 coords
 | 
						|
		v.from_p1(tmp1) //    v = 16*(prev) in P3 coords
 | 
						|
		table.select_into(mut multiple, digits[i])
 | 
						|
		tmp1.add(v, multiple) // tmp1 = x_i*Q + 16*(prev) in P1xP1 coords
 | 
						|
	}
 | 
						|
	v.from_p1(tmp1)
 | 
						|
	return v
 | 
						|
}
 | 
						|
 | 
						|
struct BasepointNaftablePrecomp {
 | 
						|
mut:
 | 
						|
	table    NafLookupTable8
 | 
						|
	initonce sync.Once
 | 
						|
}
 | 
						|
 | 
						|
fn basepoint_naf_table() NafLookupTable8 {
 | 
						|
	mut bnft := &BasepointNaftablePrecomp{}
 | 
						|
	bnft.initonce.do_with_param(fn (mut o BasepointNaftablePrecomp) {
 | 
						|
		o.table.from_p3(new_generator_point())
 | 
						|
	}, bnft)
 | 
						|
	return bnft.table
 | 
						|
}
 | 
						|
 | 
						|
// vartime_double_scalar_base_mult sets v = a * A + b * B, where B is the canonical
 | 
						|
// generator, and returns v.
 | 
						|
//
 | 
						|
// Execution time depends on the inputs.
 | 
						|
pub fn (mut v Point) vartime_double_scalar_base_mult(xa Scalar, aa Point, xb Scalar) Point {
 | 
						|
	check_initialized(aa)
 | 
						|
 | 
						|
	// Similarly to the single variable-base approach, we compute
 | 
						|
	// digits and use them with a lookup table.  However, because
 | 
						|
	// we are allowed to do variable-time operations, we don't
 | 
						|
	// need constant-time lookups or constant-time digit
 | 
						|
	// computations.
 | 
						|
	//
 | 
						|
	// So we use a non-adjacent form of some width w instead of
 | 
						|
	// radix 16.  This is like a binary representation (one digit
 | 
						|
	// for each binary place) but we allow the digits to grow in
 | 
						|
	// magnitude up to 2^{w-1} so that the nonzero digits are as
 | 
						|
	// sparse as possible.  Intuitively, this "condenses" the
 | 
						|
	// "mass" of the scalar onto sparse coefficients (meaning
 | 
						|
	// fewer additions).
 | 
						|
 | 
						|
	mut bp_naftable := basepoint_naf_table()
 | 
						|
	mut atable := NafLookupTable5{}
 | 
						|
	atable.from_p3(aa)
 | 
						|
	// Because the basepoint is fixed, we can use a wider NAF
 | 
						|
	// corresponding to a bigger table.
 | 
						|
	mut a := xa
 | 
						|
	mut b := xb
 | 
						|
	anaf := a.non_adjacent_form(5)
 | 
						|
	bnaf := b.non_adjacent_form(8)
 | 
						|
 | 
						|
	// Find the first nonzero coefficient.
 | 
						|
	mut i := 255
 | 
						|
	for j := i; j >= 0; j-- {
 | 
						|
		if anaf[j] != 0 || bnaf[j] != 0 {
 | 
						|
			break
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	mut multa := ProjectiveCached{}
 | 
						|
	mut multb := AffineCached{}
 | 
						|
	mut tmp1 := ProjectiveP1{}
 | 
						|
	mut tmp2 := ProjectiveP2{}
 | 
						|
	tmp2.zero()
 | 
						|
 | 
						|
	// Move from high to low bits, doubling the accumulator
 | 
						|
	// at each iteration and checking whether there is a nonzero
 | 
						|
	// coefficient to look up a multiple of.
 | 
						|
	for ; i >= 0; i-- {
 | 
						|
		tmp1.double(tmp2)
 | 
						|
 | 
						|
		// Only update v if we have a nonzero coeff to add in.
 | 
						|
		if anaf[i] > 0 {
 | 
						|
			v.from_p1(tmp1)
 | 
						|
			atable.select_into(mut multa, anaf[i])
 | 
						|
			tmp1.add(v, multa)
 | 
						|
		} else if anaf[i] < 0 {
 | 
						|
			v.from_p1(tmp1)
 | 
						|
			atable.select_into(mut multa, -anaf[i])
 | 
						|
			tmp1.sub(v, multa)
 | 
						|
		}
 | 
						|
 | 
						|
		if bnaf[i] > 0 {
 | 
						|
			v.from_p1(tmp1)
 | 
						|
			bp_naftable.select_into(mut multb, bnaf[i])
 | 
						|
			tmp1.add_affine(v, multb)
 | 
						|
		} else if bnaf[i] < 0 {
 | 
						|
			v.from_p1(tmp1)
 | 
						|
			bp_naftable.select_into(mut multb, -bnaf[i])
 | 
						|
			tmp1.sub_affine(v, multb)
 | 
						|
		}
 | 
						|
 | 
						|
		tmp2.from_p1(tmp1)
 | 
						|
	}
 | 
						|
 | 
						|
	v.from_p2(tmp2)
 | 
						|
	return v
 | 
						|
}
 |