v/vlib/builtin/hashmap/hashmap.v

244 lines
5.7 KiB
V

// Copyright (c) 2019-2020 Alexander Medvednikov. All rights reserved.
// Use of this source code is governed by an MIT license
// that can be found in the LICENSE file.
module hashmap
import hash.wyhash
const (
log_size = 5
n_hashbits = 24
window_size = 16
initial_size = 1 << log_size
initial_cap = initial_size - 1
default_load_factor = 0.8
hashbit_mask = u32(0xFFFFFF)
probe_offset = u32(0x1000000)
max_probe = u32(0xFF000000)
)
pub struct Hashmap {
mut:
cap u32
shift byte
window byte
info &u32
key_values &KeyValue
pub mut:
load_factor f32
size int
}
struct KeyValue {
key string
mut:
value int
}
pub fn new_hashmap() Hashmap {
return Hashmap{
cap: initial_cap
shift: log_size
window: window_size
info: &u32(calloc(sizeof(u32) * initial_size))
key_values: &KeyValue(calloc(sizeof(KeyValue) * initial_size))
load_factor: default_load_factor
size: 0
}
}
pub fn (h mut Hashmap) set(key string, value int) {
// load_factor can be adjusted.
if (f32(h.size) / f32(h.cap)) > h.load_factor {
h.rehash()
}
hash := wyhash.wyhash_c(key.str, u64(key.len), 0)
mut info := u32(((hash >> h.shift) & hashbit_mask) | probe_offset)
mut index := hash & h.cap
// While probe count is less
for info < h.info[index] {
index = (index + 1) & h.cap
info += probe_offset
}
// While we might have a match
for info == h.info[index] {
if key == h.key_values[index].key {
h.key_values[index].value = value
return
}
index = (index + 1) & h.cap
info += probe_offset
}
// Match is not possible anymore.
// Probe until an empty index is found.
// Swap when probe count is higher/richer (Robin Hood).
mut current_kv := KeyValue{key, value}
for h.info[index] != 0 {
if info > h.info[index] {
// Swap info word
tmp_info := h.info[index]
h.info[index] = info
info = tmp_info
// Swap KeyValue
tmp_kv := h.key_values[index]
h.key_values[index] = current_kv
current_kv = tmp_kv
}
index = (index + 1) & h.cap
info += probe_offset
}
// Should almost never happen
if (info & max_probe) == max_probe {
h.rehash()
h.set(current_kv.key, current_kv.value)
return
}
h.info[index] = info
h.key_values[index] = current_kv
h.size++
}
fn (h mut Hashmap) rehash() {
old_cap := h.cap
h.window--
// check if any hashbits are left
if h.window == 0 {
h.shift += window_size
}
// double the size of the hashmap
h.cap = ((h.cap + 1) << 1) - 1
mut new_key_values := &KeyValue(calloc(sizeof(KeyValue) * (h.cap + 1)))
mut new_info := &u32(calloc(sizeof(u32) * (h.cap + 1)))
for i in 0 .. (old_cap + 1) {
if h.info[i] != 0 {
mut kv := h.key_values[i]
mut hash := u64(0)
mut info := u32(0)
if h.window == 0 {
hash = wyhash.wyhash_c(kv.key.str, u64(kv.key.len), 0)
info = u32(((hash >> h.shift) & hashbit_mask) | probe_offset)
}
else {
original := u64(i - ((h.info[i] >> n_hashbits) - 1)) & (h.cap >> 1)
hash = original | (h.info[i] << h.shift)
info = (h.info[i] & hashbit_mask) | probe_offset
}
mut index := hash & h.cap
// While probe count is less
for info < new_info[index] {
index = (index + 1) & h.cap
info += probe_offset
}
// Probe until an empty index is found.
// Swap when probe count is higher/richer (Robin Hood).
for new_info[index] != 0 {
if info > new_info[index] {
// Swap info word
tmp_info := new_info[index]
new_info[index] = info
info = tmp_info
// Swap KeyValue
tmp_kv := new_key_values[index]
new_key_values[index] = kv
kv = tmp_kv
}
index = (index + 1) & h.cap
info += probe_offset
}
// Should almost never happen
if (info & max_probe) == max_probe {
h.rehash()
h.set(kv.key, kv.value)
return
}
new_info[index] = info
new_key_values[index] = kv
}
}
if h.window == 0 {
h.window = window_size
}
free(h.key_values)
free(h.info)
h.key_values = new_key_values
h.info = new_info
}
pub fn (h mut Hashmap) delete(key string) {
hash := wyhash.wyhash_c(key.str, u64(key.len), 0)
mut index := hash & h.cap
mut info := u32(((hash >> h.shift) & hashbit_mask) | probe_offset)
for info < h.info[index] {
index = (index + 1) & h.cap
info += probe_offset
}
// Perform backwards shifting
for info == h.info[index] {
if key == h.key_values[index].key {
mut old_index := index
index = (index + 1) & h.cap
mut current_info := h.info[index]
for (current_info >> n_hashbits) > 1 {
h.info[old_index] = current_info - probe_offset
h.key_values[old_index] = h.key_values[index]
old_index = index
index = (index + 1) & h.cap
current_info = h.info[index]
}
h.info[old_index] = 0
h.size--
return
}
index = (index + 1) & h.cap
info += probe_offset
}
}
pub fn (h Hashmap) get(key string) int {
hash := wyhash.wyhash_c(key.str, u64(key.len), 0)
mut index := hash & h.cap
mut info := u32(((hash >> h.shift) & hashbit_mask) | probe_offset)
for info < h.info[index] {
index = (index + 1) & h.cap
info += probe_offset
}
for info == h.info[index] {
if key == h.key_values[index].key {
return h.key_values[index].value
}
index = (index + 1) & h.cap
info += probe_offset
}
return 0
}
pub fn (h Hashmap) exists(key string) bool {
hash := wyhash.wyhash_c(key.str, u64(key.len), 0)
mut index := hash & h.cap
mut info := u32(((hash >> h.shift) & hashbit_mask) | probe_offset)
for info < h.info[index] {
index = (index + 1) & h.cap
info += probe_offset
}
for info == h.info[index] {
if key == h.key_values[index].key {
return true
}
index = (index + 1) & h.cap
info += probe_offset
}
return false
}
pub fn (h Hashmap) keys() []string {
mut keys := [''].repeat(h.size)
mut j := 0
for i in 0 .. (h.cap + 1) {
if h.info[i] != 0 {
keys[j] = h.key_values[i].key
j++
}
}
return keys
}