feat(cron): some bug fixes & formatting
parent
292e43944e
commit
fbc18386e2
|
@ -5,6 +5,5 @@ root = true
|
|||
end_of_line = lf
|
||||
insert_final_newline = true
|
||||
|
||||
[*.v]
|
||||
# vfmt wants it :(
|
||||
[*.{v,c,h}]
|
||||
indent_style = tab
|
||||
|
|
|
@ -4,15 +4,15 @@
|
|||
const uint8_t month_days[] = {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
|
||||
|
||||
struct cron_expression *ce_init() {
|
||||
return malloc(sizeof(struct cron_expression));
|
||||
return malloc(sizeof(struct cron_expression));
|
||||
}
|
||||
|
||||
void ce_free(struct cron_expression *ce) {
|
||||
free(ce->months);
|
||||
free(ce->days);
|
||||
free(ce->hours);
|
||||
free(ce->minutes);
|
||||
free(ce);
|
||||
free(ce->months);
|
||||
free(ce->days);
|
||||
free(ce->hours);
|
||||
free(ce->minutes);
|
||||
free(ce);
|
||||
}
|
||||
|
||||
int ce_next(struct cron_simple_time *out, struct cron_expression *ce, struct cron_simple_time *ref) {
|
||||
|
@ -21,100 +21,101 @@ int ce_next(struct cron_simple_time *out, struct cron_expression *ce, struct cro
|
|||
// means we've looped back around. This means that the "bigger" value has
|
||||
// to be incremented by one. For example, if the minutes have looped
|
||||
// around, that means that the hour has to be incremented as well.
|
||||
uint8_t month_index = 0;
|
||||
uint8_t day_index = 0;
|
||||
uint8_t hour_index = 0;
|
||||
uint8_t minute_index = 0;
|
||||
uint8_t month_index = 0;
|
||||
uint8_t day_index = 0;
|
||||
uint8_t hour_index = 0;
|
||||
uint8_t minute_index = 0;
|
||||
|
||||
// This chain is the same logic multiple times, namely that if a "bigger"
|
||||
// value loops around, then the smaller value will always reset as well.
|
||||
// For example, if we're going to a new day, the hour & minute will always
|
||||
// be their smallest value again.
|
||||
while (month_index < ce->month_count && ref->month > ce->months[month_index]) {
|
||||
month_index++;
|
||||
}
|
||||
while (month_index < ce->month_count && ref->month > ce->months[month_index]) {
|
||||
month_index++;
|
||||
}
|
||||
|
||||
if (month_index < ce->month_count && ref->month == ce->months[month_index]) {
|
||||
while (day_index < ce->day_count && ref->day > ce->days[day_index]) {
|
||||
day_index++;
|
||||
}
|
||||
if (month_index < ce->month_count && ref->month == ce->months[month_index]) {
|
||||
while (day_index < ce->day_count && ref->day > ce->days[day_index]) {
|
||||
day_index++;
|
||||
}
|
||||
|
||||
if (day_index < ce->day_count && ref->day == ce->days[day_index]) {
|
||||
while (hour_index < ce->hour_count && ref->hour > ce->hours[hour_index]) {
|
||||
hour_index++;
|
||||
}
|
||||
if (day_index < ce->day_count && ref->day == ce->days[day_index]) {
|
||||
while (hour_index < ce->hour_count && ref->hour > ce->hours[hour_index]) {
|
||||
hour_index++;
|
||||
}
|
||||
|
||||
if (hour_index < ce->hour_count && ref->hour == ce->hours[hour_index]) {
|
||||
if (hour_index < ce->hour_count && ref->hour == ce->hours[hour_index]) {
|
||||
// Minute is the only value where we explicitely make sure we
|
||||
// can't match sref's value exactly. This is to ensure we only
|
||||
// return values in the future.
|
||||
while (minute_index < ce->minute_count && ref->minute >= ce->minutes[minute_index]) {
|
||||
minute_index++;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
while (minute_index < ce->minute_count && ref->minute >= ce->minutes[minute_index]) {
|
||||
minute_index++;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Here, we increment the "bigger" values by one if the smaller ones loop
|
||||
// around. The order is important, as it allows a sort-of waterfall effect
|
||||
// to occur which updates all values if required.
|
||||
if (minute_index == ce->minute_count && hour_index < ce->hour_count) {
|
||||
hour_index++;
|
||||
}
|
||||
if (minute_index == ce->minute_count && hour_index < ce->hour_count) {
|
||||
hour_index++;
|
||||
}
|
||||
|
||||
if (hour_index == ce->hour_count && day_index < ce->day_count) {
|
||||
day_index++;
|
||||
}
|
||||
if (hour_index == ce->hour_count && day_index < ce->day_count) {
|
||||
day_index++;
|
||||
}
|
||||
|
||||
if (day_index == ce->day_count && month_index < ce->month_count) {
|
||||
month_index++;
|
||||
}
|
||||
if (day_index == ce->day_count && month_index < ce->month_count) {
|
||||
month_index++;
|
||||
}
|
||||
|
||||
out->minute = ce->minutes[minute_index % ce->minute_count];
|
||||
out->hour = ce->hours[hour_index % ce->hour_count];
|
||||
out->day = ce->days[day_index % ce->day_count];
|
||||
out->minute = ce->minutes[minute_index % ce->minute_count];
|
||||
out->hour = ce->hours[hour_index % ce->hour_count];
|
||||
out->day = ce->days[day_index % ce->day_count];
|
||||
|
||||
// Sometimes, we end up with a day that does not exist within the selected
|
||||
// month, e.g. day 30 in February. When this occurs, we reset day back to
|
||||
// the smallest value & loop over to the next month that does have this
|
||||
// day.
|
||||
if (out->day > month_days[ce->months[month_index % ce->month_count] - 1]) {
|
||||
out->day = ce->days[0];
|
||||
month_index++;
|
||||
if (out->day > month_days[ce->months[month_index % ce->month_count] - 1]) {
|
||||
out->day = ce->days[0];
|
||||
month_index++;
|
||||
|
||||
while (out->day > month_days[ce->months[month_index % ce->month_count] - 1]) {
|
||||
month_index++;
|
||||
|
||||
if (month_index == 2 * ce->month_count) {
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
while (out->day > month_days[ce->months[month_index % ce->month_count] - 1]) {
|
||||
month_index++;
|
||||
|
||||
out->month = ce->months[month_index % ce->month_count];
|
||||
// TODO find out if this can happen
|
||||
if (month_index == 2 * ce->month_count) {
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (month_index >= ce->month_count) {
|
||||
out->year = ref->year + 1;
|
||||
} else {
|
||||
out->year = ref->year;
|
||||
}
|
||||
out->month = ce->months[month_index % ce->month_count];
|
||||
|
||||
return 0;
|
||||
if (month_index >= ce->month_count) {
|
||||
out->year = ref->year + 1;
|
||||
} else {
|
||||
out->year = ref->year;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
int ce_next_from_now(struct cron_simple_time *out, struct cron_expression *ce) {
|
||||
time_t t = time(NULL);
|
||||
struct tm gm;
|
||||
gmtime_r(&t, &gm);
|
||||
time_t t = time(NULL);
|
||||
struct tm gm;
|
||||
gmtime_r(&t, &gm);
|
||||
|
||||
struct cron_simple_time ref = {
|
||||
.year = gm.tm_year,
|
||||
// tm_mon goes from 0 to 11
|
||||
.month = gm.tm_mon + 1,
|
||||
.day = gm.tm_mday,
|
||||
.hour = gm.tm_hour,
|
||||
.minute = gm.tm_min
|
||||
};
|
||||
struct cron_simple_time ref = {
|
||||
.year = gm.tm_year,
|
||||
// tm_mon goes from 0 to 11
|
||||
.month = gm.tm_mon + 1,
|
||||
.day = gm.tm_mday,
|
||||
.hour = gm.tm_hour,
|
||||
.minute = gm.tm_min
|
||||
};
|
||||
|
||||
return ce_next(out, ce, &ref);
|
||||
return ce_next(out, ce, &ref);
|
||||
}
|
||||
|
|
|
@ -4,29 +4,29 @@
|
|||
#include <string.h>
|
||||
|
||||
enum cron_parse_error {
|
||||
CPEParseOk = 0,
|
||||
CPEParseInvalidExpression = 1,
|
||||
CPEParseInvalidNumber = 2,
|
||||
CPEParseOutOfRange = 3
|
||||
CPEParseOk = 0,
|
||||
CPEParseInvalidExpression = 1,
|
||||
CPEParseInvalidNumber = 2,
|
||||
CPEParseOutOfRange = 3
|
||||
};
|
||||
|
||||
struct cron_expression {
|
||||
uint8_t *minutes;
|
||||
uint8_t *hours;
|
||||
uint8_t *days;
|
||||
uint8_t *months;
|
||||
uint8_t minute_count;
|
||||
uint8_t hour_count;
|
||||
uint8_t day_count;
|
||||
uint8_t month_count;
|
||||
uint8_t *minutes;
|
||||
uint8_t *hours;
|
||||
uint8_t *days;
|
||||
uint8_t *months;
|
||||
uint8_t minute_count;
|
||||
uint8_t hour_count;
|
||||
uint8_t day_count;
|
||||
uint8_t month_count;
|
||||
};
|
||||
|
||||
struct cron_simple_time {
|
||||
int year;
|
||||
int month;
|
||||
int day;
|
||||
int hour;
|
||||
int minute;
|
||||
int year;
|
||||
int month;
|
||||
int day;
|
||||
int hour;
|
||||
int minute;
|
||||
};
|
||||
|
||||
struct cron_expression *ce_init();
|
||||
|
|
|
@ -1,25 +1,28 @@
|
|||
#include "expression.h"
|
||||
|
||||
// Allowed value ranges for the minute, hour, day and month field
|
||||
const uint8_t min[4] = {0, 0, 1, 1};
|
||||
const uint8_t max[4] = {59, 23, 31, 12};
|
||||
|
||||
// Convert a string a uint8_t value by parsing it using atoi and checking
|
||||
// whether it's contained within the given range
|
||||
#define SAFE_ATOI(v,s,min,max) \
|
||||
int _##v = atoi(s); \
|
||||
if ((_##v) == 0 && strcmp((s), "0") != 0) { \
|
||||
return CPEParseInvalidNumber; \
|
||||
} \
|
||||
if (v < (min) || v > (max)) { \
|
||||
return CPEParseOutOfRange; \
|
||||
} \
|
||||
v = (uint8_t) (_##v);
|
||||
int _##v = atoi(s); \
|
||||
if ((_##v) == 0 && strcmp((s), "0") != 0) { \
|
||||
return CPEParseInvalidNumber; \
|
||||
} \
|
||||
if (v < (min) || v > (max)) { \
|
||||
return CPEParseOutOfRange; \
|
||||
} \
|
||||
v = (uint8_t) (_##v);
|
||||
|
||||
/**
|
||||
* Given a range expression, produce a bit field defining what numbers in the
|
||||
* min-max range the expression represents. The first bit (starting from the
|
||||
* right) corresponds to min, the max - min + 1'th bit to max. All trailing bits
|
||||
* min-max range the expression represents. Bit 0 (starting from the
|
||||
* right) corresponds to min, the bit max - min to max. All trailing bits
|
||||
* after this should be ignored. The given bitfield is modified in-place, so
|
||||
* multiple calls of this function can be performed on the same value to create
|
||||
* the effect of ORing their values:
|
||||
* the effect of ORing their values.
|
||||
*
|
||||
* A range expression has one of the following forms:
|
||||
*
|
||||
|
@ -30,185 +33,210 @@ const uint8_t max[4] = {59, 23, 31, 12};
|
|||
* - a-b/c
|
||||
*/
|
||||
enum cron_parse_error ce_parse_range(uint64_t *out, char *s, uint8_t min, uint8_t max) {
|
||||
// The * expression means "every possible value"
|
||||
if (s[0] == '*') {
|
||||
// A '*' is only valid on its own
|
||||
if (s[1] != '\0') {
|
||||
return CPEParseInvalidExpression;
|
||||
}
|
||||
// The * expression means "every possible value"
|
||||
if (s[0] == '*') {
|
||||
// A '*' is only valid on its own
|
||||
if (s[1] != '\0') {
|
||||
return CPEParseInvalidExpression;
|
||||
}
|
||||
|
||||
*out = ~0;
|
||||
*out = ~0;
|
||||
|
||||
return CPEParseOk;
|
||||
}
|
||||
return CPEParseOk;
|
||||
}
|
||||
|
||||
size_t slash_index = 0;
|
||||
size_t dash_index = 0;
|
||||
size_t i = 0;
|
||||
size_t slash_index = 0;
|
||||
size_t dash_index = 0;
|
||||
size_t i = 0;
|
||||
|
||||
// We first iterate over the string to determine whether it contains a slash
|
||||
// and/or a dash. We know the dash can only be valid if it appears before
|
||||
// the slash.
|
||||
while (s[i] != '\0' && slash_index == 0) {
|
||||
if (s[i] == '/') {
|
||||
slash_index = i;
|
||||
// We first iterate over the string to determine whether it contains a slash
|
||||
// and/or a dash. We know the dash can only be valid if it appears before
|
||||
// the slash.
|
||||
while (s[i] != '\0' && slash_index == 0) {
|
||||
if (s[i] == '/') {
|
||||
slash_index = i;
|
||||
|
||||
s[i] = '\0';
|
||||
} else if (s[i] == '-') {
|
||||
dash_index = i;
|
||||
s[i] = '\0';
|
||||
} else if (s[i] == '-') {
|
||||
dash_index = i;
|
||||
|
||||
s[i] = '\0';
|
||||
}
|
||||
s[i] = '\0';
|
||||
}
|
||||
|
||||
i++;
|
||||
}
|
||||
i++;
|
||||
}
|
||||
|
||||
// Parse the three possible numbers in the pattern
|
||||
uint8_t start = 0;
|
||||
uint8_t end = 0;
|
||||
uint8_t interval = 1;
|
||||
// Parse the three possible numbers in the pattern
|
||||
uint8_t start = 0;
|
||||
uint8_t end = max;
|
||||
uint8_t interval = 1;
|
||||
|
||||
SAFE_ATOI(start, s, min, max);
|
||||
SAFE_ATOI(start, s, min, max);
|
||||
|
||||
if (dash_index > 0) {
|
||||
SAFE_ATOI(end, &s[dash_index + 1], min, max);
|
||||
}
|
||||
if (dash_index > 0) {
|
||||
SAFE_ATOI(end, &s[dash_index + 1], min, max);
|
||||
}
|
||||
|
||||
if (slash_index > 0) {
|
||||
SAFE_ATOI(interval, &s[slash_index + 1], 1, max - min);
|
||||
}
|
||||
if (slash_index > 0) {
|
||||
SAFE_ATOI(interval, &s[slash_index + 1], 1, max - min);
|
||||
}
|
||||
|
||||
// Single number doesn't need to loop
|
||||
if (end == 0 && slash_index == 0) {
|
||||
*out |= ((uint64_t) 1) << (start - min);
|
||||
} else {
|
||||
for (;start <= end; start += interval) {
|
||||
*out |= ((uint64_t) 1) << (start - min);
|
||||
start += interval;
|
||||
}
|
||||
}
|
||||
if (dash_index == 0 && slash_index == 0) {
|
||||
*out |= ((uint64_t) 1) << (start - min);
|
||||
} else {
|
||||
while (start <= end) {
|
||||
*out |= ((uint64_t) 1) << (start - min);
|
||||
start += interval;
|
||||
}
|
||||
}
|
||||
|
||||
return CPEParseOk;
|
||||
return CPEParseOk;
|
||||
}
|
||||
|
||||
/*
|
||||
* Given an expression part, produce a bitfield defining what numbers in the
|
||||
* min-max range the part represents. A part consists of one or more range
|
||||
* expressions, separated by commas.
|
||||
*/
|
||||
enum cron_parse_error ce_parse_part(uint64_t *out, char *s, uint8_t min, uint8_t max) {
|
||||
*out = 0;
|
||||
*out = 0;
|
||||
|
||||
char *next;
|
||||
enum cron_parse_error res;
|
||||
|
||||
while ((next = strchr(s, ',')) != NULL) {
|
||||
next[0] = '\0';
|
||||
res = ce_parse_range(out, s, min, max);
|
||||
char *next;
|
||||
enum cron_parse_error res;
|
||||
|
||||
if (res != CPEParseOk) {
|
||||
return res;
|
||||
}
|
||||
while ((next = strchr(s, ',')) != NULL) {
|
||||
next[0] = '\0';
|
||||
res = ce_parse_range(out, s, min, max);
|
||||
|
||||
s = next + 1;
|
||||
}
|
||||
if (res != CPEParseOk) {
|
||||
return res;
|
||||
}
|
||||
|
||||
// Make sure to parse the final range as well
|
||||
return ce_parse_range(out, s, min, max);
|
||||
s = next + 1;
|
||||
}
|
||||
|
||||
// Make sure to parse the final range as well
|
||||
return ce_parse_range(out, s, min, max);
|
||||
}
|
||||
|
||||
/*
|
||||
* Return how many bits are set in the bitfield, better known as popcount. I
|
||||
* added my own implementation (taken from my algorithms course) as I don't want
|
||||
* to be dependent on GCC-specific extensions.
|
||||
*/
|
||||
uint8_t uint64_t_popcount(uint64_t n) {
|
||||
uint8_t c = 0;
|
||||
|
||||
while (n != 0) {
|
||||
// This sets the least significant bit to zero (very cool)
|
||||
n &= n - 1;
|
||||
c++;
|
||||
}
|
||||
|
||||
return c;
|
||||
}
|
||||
|
||||
/*
|
||||
* Convert a bitfield into an array containing the numbers in the min-max range
|
||||
* it represents.
|
||||
*/
|
||||
uint8_t bf_to_nums(uint8_t **out, uint64_t bf, uint8_t min, uint8_t max) {
|
||||
uint8_t capacity = 8;
|
||||
uint8_t size = 0;
|
||||
// Each bit field only has `max - min + 1` meaningful bits. All other bits
|
||||
// should be ignored, and can be any value. By shifting the bit field back and
|
||||
// forth, we set these excessive bits to zero, ensuring popcount returns the
|
||||
// correct value.
|
||||
uint8_t excess_bits = 64 - (max - min + 1);
|
||||
bf = (bf << excess_bits) >> excess_bits;
|
||||
uint8_t size = uint64_t_popcount(bf);
|
||||
uint8_t *buf = malloc(size * sizeof(uint8_t));
|
||||
|
||||
uint8_t *buf = malloc(capacity * sizeof(uint8_t));
|
||||
uint8_t i = 0, j = 0;
|
||||
|
||||
for (uint8_t i = 0; i <= max - min; i++) {
|
||||
if (((uint64_t) 1 << i) & bf) {
|
||||
// Resize buffer if needed
|
||||
if (size == capacity) {
|
||||
capacity *= 2;
|
||||
buf = realloc(buf, capacity * sizeof(uint8_t));
|
||||
}
|
||||
while (j < size && i <= max - min) {
|
||||
if (((uint64_t)1 << i) & bf) {
|
||||
// Resize buffer if needed
|
||||
buf[j] = min + i;
|
||||
j++;
|
||||
}
|
||||
|
||||
buf[size] = min + i;
|
||||
size++;
|
||||
}
|
||||
}
|
||||
i++;
|
||||
}
|
||||
|
||||
// Resize buffer once more to remove any trailing unused bytes
|
||||
if (size < capacity) {
|
||||
buf = realloc(buf, size * sizeof(uint8_t));
|
||||
}
|
||||
*out = buf;
|
||||
|
||||
*out = buf;
|
||||
|
||||
return size;
|
||||
return size;
|
||||
}
|
||||
|
||||
/*
|
||||
* Parse a cron expression string into a cron_expression struct.
|
||||
*/
|
||||
enum cron_parse_error ce_parse_expression(struct cron_expression *out, char *s) {
|
||||
// The parsing functions modify the input string in-place
|
||||
s = strdup(s);
|
||||
char *orig_s = s;
|
||||
// The parsing functions modify the input string in-place
|
||||
s = strdup(s);
|
||||
char *orig_s = s;
|
||||
|
||||
uint8_t part_count = 0;
|
||||
uint8_t part_count = 0;
|
||||
|
||||
char *next;
|
||||
enum cron_parse_error res = CPEParseOk;
|
||||
uint64_t bfs[4];
|
||||
char *next;
|
||||
enum cron_parse_error res = CPEParseOk;
|
||||
uint64_t bfs[4];
|
||||
|
||||
// Skip leading spaces
|
||||
while (s[0] == ' ') {
|
||||
s++;
|
||||
}
|
||||
|
||||
while (part_count < 4 && ((next = strchr(s, ' ')) != NULL)) {
|
||||
next[0] = '\0';
|
||||
res = ce_parse_part(&bfs[part_count], s, min[part_count], max[part_count]);
|
||||
// Skip leading spaces
|
||||
while (s[0] == ' ') {
|
||||
s++;
|
||||
}
|
||||
|
||||
if (res != CPEParseOk) {
|
||||
goto end;
|
||||
}
|
||||
while (part_count < 4 && ((next = strchr(s, ' ')) != NULL)) {
|
||||
next[0] = '\0';
|
||||
res = ce_parse_part(&bfs[part_count], s, min[part_count], max[part_count]);
|
||||
|
||||
size_t offset = 1;
|
||||
if (res != CPEParseOk) {
|
||||
goto end;
|
||||
}
|
||||
|
||||
// Skip multiple spaces
|
||||
while (next[offset] == ' ') {
|
||||
offset++;
|
||||
}
|
||||
s = next + offset;
|
||||
size_t offset = 1;
|
||||
|
||||
part_count++;
|
||||
}
|
||||
// Skip multiple spaces
|
||||
while (next[offset] == ' ') {
|
||||
offset++;
|
||||
}
|
||||
s = next + offset;
|
||||
|
||||
// Parse final trailing part
|
||||
if (part_count < 4 && s[0] != '\0') {
|
||||
// Make sure to parse the final range as well
|
||||
res = ce_parse_part(&bfs[part_count], s, min[part_count], max[part_count]);
|
||||
part_count++;
|
||||
}
|
||||
|
||||
if (res != CPEParseOk) {
|
||||
goto end;
|
||||
}
|
||||
// Parse final trailing part
|
||||
if (part_count < 4 && s[0] != '\0') {
|
||||
res = ce_parse_part(&bfs[part_count], s, min[part_count], max[part_count]);
|
||||
|
||||
part_count++;
|
||||
}
|
||||
if (res != CPEParseOk) {
|
||||
goto end;
|
||||
}
|
||||
|
||||
// At least two parts need to be provided
|
||||
if (part_count < 2) {
|
||||
res = CPEParseInvalidExpression;
|
||||
goto end;
|
||||
}
|
||||
part_count++;
|
||||
}
|
||||
|
||||
// Ensure there's always 4 parts, as expressions can have between 2 and 4 parts
|
||||
while (part_count < 4) {
|
||||
// Expression is augmented with '*' expressions
|
||||
bfs[part_count] = ~0;
|
||||
part_count++;
|
||||
}
|
||||
// At least two parts need to be provided
|
||||
if (part_count < 2) {
|
||||
res = CPEParseInvalidExpression;
|
||||
goto end;
|
||||
}
|
||||
|
||||
out->minute_count = bf_to_nums(&out->minutes, bfs[0], min[0], max[0]);
|
||||
out->hour_count = bf_to_nums(&out->hours, bfs[1], min[1], max[1]);
|
||||
out->day_count = bf_to_nums(&out->days, bfs[2], min[2], max[2]);
|
||||
out->month_count = bf_to_nums(&out->months, bfs[3], min[3], max[3]);
|
||||
// Ensure there's always 4 parts, as expressions can have between 2 and 4 parts
|
||||
while (part_count < 4) {
|
||||
// Expression is augmented with '*' expressions
|
||||
bfs[part_count] = ~0;
|
||||
part_count++;
|
||||
}
|
||||
|
||||
out->minute_count = bf_to_nums(&out->minutes, bfs[0], min[0], max[0]);
|
||||
out->hour_count = bf_to_nums(&out->hours, bfs[1], min[1], max[1]);
|
||||
out->day_count = bf_to_nums(&out->days, bfs[2], min[2], max[2]);
|
||||
out->month_count = bf_to_nums(&out->months, bfs[3], min[3], max[3]);
|
||||
|
||||
end:
|
||||
// s is cloned
|
||||
free(orig_s);
|
||||
// s is cloned
|
||||
free(orig_s);
|
||||
|
||||
return res;
|
||||
return res;
|
||||
}
|
||||
|
|
|
@ -22,15 +22,15 @@ fn test_next_simple() ! {
|
|||
/* util_test_time('0 3', '2002-01-01 00:00:00', '2002-01-01 03:00:00')! */
|
||||
|
||||
// Overlap to next day
|
||||
mut exp := '0 3'
|
||||
mut exp := '0 3 '
|
||||
util_test_time(exp, '2002-01-01 03:00:00', '2002-01-02 03:00:00')!
|
||||
util_test_time(exp, '2002-01-01 04:00:00', '2002-01-02 03:00:00')!
|
||||
|
||||
/* util_test_time('0 3/4', '2002-01-01 04:00:00', '2002-01-01 07:00:00')! */
|
||||
util_test_time('0 3/4', '2002-01-01 04:00:00', '2002-01-01 07:00:00')!
|
||||
|
||||
/* // Overlap to next month */
|
||||
/* util_test_time('0 3', '2002-11-31 04:00:00', '2002-12-01 03:00:00')! */
|
||||
util_test_time('0 3', '2002-11-31 04:00:00', '2002-12-01 03:00:00')!
|
||||
|
||||
/* // Overlap to next year */
|
||||
/* util_test_time('0 3', '2002-12-31 04:00:00', '2003-01-01 03:00:00')! */
|
||||
util_test_time('0 3', '2002-12-31 04:00:00', '2003-01-01 03:00:00')!
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue