Compare commits

..

No commits in common. "job-queue" and "dev" have entirely different histories.

16 changed files with 3 additions and 683 deletions

View File

@ -1,5 +0,0 @@
root = true
[*.{c,h}]
indent_style = space
indent_size = 2

View File

@ -11,8 +11,7 @@ INC_DIRS ?= include
LIB := $(BUILD_DIR)/$(LIB_FILENAME) LIB := $(BUILD_DIR)/$(LIB_FILENAME)
SRCS != find '$(SRC_DIR)' -iname '*.c' SRCS != find '$(SRC_DIR)' -iname '*.c'
SRCS_H != find $(INC_DIRS) -iname '*.h' SRCS_H != find $(INC_DIRS) '$(SRC_DIR)' -iname '*.h'
SRCS_H_INTERNAL != find $(SRC_DIR) -iname '*.h'
SRCS_TEST != find '$(TEST_DIR)' -iname '*.c' SRCS_TEST != find '$(TEST_DIR)' -iname '*.c'
OBJS := $(SRCS:%=$(BUILD_DIR)/%.o) OBJS := $(SRCS:%=$(BUILD_DIR)/%.o)
@ -87,22 +86,16 @@ $(BUILD_DIR)/$(TEST_DIR)/%.c.o: $(TEST_DIR)/%.c
# =====MAINTENANCE===== # =====MAINTENANCE=====
.PHONY: lint .PHONY: lint
lint: lint:
clang-format -n --Werror $(SRCS) $(SRCS_H) $(SRCS_H_INTERNAL) clang-format -n --Werror $(SRCS) $(SRCS_H)
.PHONY: fmt .PHONY: fmt
fmt: fmt:
clang-format -i $(SRCS) $(SRCS_H) $(SRCS_H_INTERNAL) clang-format -i $(SRCS) $(SRCS_H)
.PHONY: clean .PHONY: clean
clean: clean:
rm -rf $(BUILD_DIR) rm -rf $(BUILD_DIR)
.PHONY: bear
bear: clean
bear -- make
bear --append -- make build-test
# Make make aware of the .d files # Make make aware of the .d files
-include $(DEPS) -include $(DEPS)

View File

@ -1,30 +0,0 @@
#ifndef VIETER_CAT_HEAP
#define VIETER_CAT_HEAP
#include <stdint.h>
typedef struct vieter_cat_heap vieter_cat_heap;
typedef enum vieter_cat_heap_error {
vieter_cat_heap_ok = 0,
vieter_cat_heap_arch_empty = 1,
vieter_cat_heap_arch_not_found = 2
} vieter_cat_heap_error;
vieter_cat_heap *vieter_cat_heap_init();
void vieter_cat_heap_free(vieter_cat_heap *cheap);
uint64_t vieter_cat_heap_size(vieter_cat_heap *cheap);
vieter_cat_heap_error vieter_cat_heap_insert(vieter_cat_heap *cheap,
char *category, uint64_t key,
void *data);
vieter_cat_heap_error vieter_cat_heap_pop(void **out, vieter_cat_heap *cheap,
char *category);
vieter_cat_heap_error vieter_cat_heap_peek(void **out, vieter_cat_heap *cheap,
char *category);
#endif

View File

@ -1,160 +0,0 @@
#ifndef VIETER_JOB_QUEUE
#define VIETER_JOB_QUEUE
#include "vieter_cron.h"
#include <stdbool.h>
#include <stdint.h>
/*
* The order of these do not imply that they happen in this order. New states
* will just get added as consecutive numbers. Their values should be
* monotonically increasing values, as these will be used to index arrays, among
* other things.
*/
typedef enum vieter_job_state {
vieter_job_state_queued = 0,
vieter_job_state_ready = 1,
vieter_job_state_build_finished = 2,
vieter_job_state_failed = 3
} vieter_job_state;
// This macro should be kept in sync with the above enum
#define VIETER_JOB_STATES 4
// Neither of these states are allowed to be categorized
#define VIETER_JOB_INITIAL_STATE vieter_job_state_queued
#define VIETER_JOB_FAILURE_STATE vieter_job_state_failed
// Bitmap describing what states should be divided into multiple architectures
#define VIETER_JOB_STATES_ARCH 0b0010
#define VIETER_JOB_STATE_IS_ARCH(i) (VIETER_JOB_STATES_ARCH & (1 << i))
/*
* Struct storing a report for why a certain job failed to be processed in the
* given state.
*/
typedef struct vieter_job_failure_report {
vieter_job_state failed_state;
char *msg;
} vieter_job_failure_report;
vieter_job_failure_report *vieter_job_failure_report_init();
void vieter_job_failure_report_free(vieter_job_failure_report *report);
/*
* Represents a job currently being processed in the system. A job migrates
* between different states before finally being removed from the queue.
*/
typedef struct vieter_job {
uint64_t id;
uint64_t next_scheduled_time;
vieter_cron_expression *schedule;
void *build_config;
char *arch;
vieter_job_failure_report *failure_report;
uint64_t state_transition_times[VIETER_JOB_STATES];
vieter_job_state current_state;
bool single;
bool dispatched;
} vieter_job;
/*
* Allocate a new vieter_job object.
*/
vieter_job *vieter_job_init();
void vieter_job_free(vieter_job *job);
/*
* Represents the actual queue managing the list of jobs.
*/
typedef struct vieter_job_queue vieter_job_queue;
typedef enum vieter_job_queue_error {
vieter_job_queue_ok = 0,
vieter_job_queue_not_present = 1,
vieter_job_queue_already_present = 2,
vieter_job_queue_state_empty = 3,
vieter_job_queue_not_dispatched = 4,
vieter_job_queue_state_is_arch = 5,
vieter_job_queue_state_is_not_arch = 6,
} vieter_job_queue_error;
/*
* Allocate and initialize a new job queue.
*/
vieter_job_queue *vieter_job_queue_init();
/*
* Free a job queue.
*/
void vieter_job_queue_free(vieter_job_queue *queue);
/*
* Insert the given job into the system.
*/
vieter_job_queue_error vieter_job_queue_insert(vieter_job_queue *queue,
vieter_job *job);
/*
* Pop a job from the given non-categorized state's queue. The job will then be
* marked as dispatched.
*/
vieter_job_queue_error vieter_job_queue_pop(vieter_job **out,
vieter_job_queue *queue,
vieter_job_state state);
/*
* Pop a job from the given categorized state's queue. The job will then be
* marked as dispatched.
*/
vieter_job_queue_error vieter_job_queue_pop_arch(vieter_job **out,
vieter_job_queue *queue,
vieter_job_state state,
char *arch);
/*
* Transition the job with the given id to the new state. This sets the
* job's dispatch flag to false, and adds it to the new state's queue.
*
* NOTE: this can only be done with dispatched jobs.
*/
vieter_job_queue_error vieter_job_queue_transition(vieter_job_queue *queue,
uint64_t id,
vieter_job_state new_state);
/*
* Remove the given job from the job queue, returning its pointer to the caller.
*
* NOTE: this can only be done with dispatched jobs.
*/
vieter_job_queue_error
vieter_job_queue_remove(vieter_job **out, vieter_job_queue *queue, uint64_t id);
/*
* Transition a job into the failure state, and attach a failure report with the
* provided message. The message is copied, so the caller is responsible for
* freeing the provided string.
*
* NOTE: this can only be done with dispatched jobs.
*/
vieter_job_queue_error vieter_job_queue_fail(vieter_job_queue *queue,
uint64_t id, char *report_message);
/*
* Acquire a read lock on the job queue. Return value is the result of
* pthread_rwlock_rdlock.
*/
int vieter_job_queue_rlock(vieter_job_queue *job_queue);
/*
* Acquire a write lock on the job queue. Return value is the result of
* pthread_rwlock_wrlock.
*/
int vieter_job_queue_wlock(vieter_job_queue *job_queue);
/*
* Unlock the lock after having acquired it. Return value is the result of
* pthread_rwlock_unlock.
*/
int vieter_job_queue_unlock(vieter_job_queue *job_queue);
#endif

View File

@ -67,22 +67,4 @@ void vieter_tree_iterator_free(vieter_tree_iterator **ptp);
vieter_tree_error vieter_tree_iterator_next(void **out, vieter_tree_error vieter_tree_iterator_next(void **out,
vieter_tree_iterator *iter); vieter_tree_iterator *iter);
/*
* Acquire a read lock on the tree. Return value is the result of
* pthread_rwlock_rdlock.
*/
int vieter_tree_rlock(vieter_tree *tree);
/*
* Acquire a write lock on the tree. Return value is the result of
* pthread_rwlock_wrlock.
*/
int vieter_tree_wlock(vieter_tree *tree);
/*
* Unlock the lock after having acquired it. Return value is the result of
* pthread_rwlock_unlock.
*/
int vieter_tree_unlock(vieter_tree *tree);
#endif #endif

View File

@ -1,4 +0,0 @@
A category heap consists of a collection of heaps, with each heap representing
a certain category. In practice, this category would be an architecture (e.g.
`x86_64`). This is used by the job queue to have a queue for each architecture
for a given state.

View File

@ -1,104 +0,0 @@
#include "vieter_cat_heap_internal.h"
vieter_cat_heap *vieter_cat_heap_init() {
return calloc(1, sizeof(vieter_cat_heap));
}
void vieter_cat_heap_free(vieter_cat_heap *cheap) {
if (cheap->cat_count > 0) {
for (uint64_t i = 0; i < cheap->cat_count; i++) {
free(cheap->categories[i]);
vieter_heap_free(cheap->heaps[i]);
}
free(cheap->categories);
free(cheap->heaps);
}
free(cheap);
}
uint64_t vieter_cat_heap_size(vieter_cat_heap *cheap) {
uint64_t total = 0;
for (uint64_t i = 0; i < cheap->cat_count; i++) {
total += vieter_heap_size(cheap->heaps[i]);
}
return total;
}
vieter_cat_heap_error vieter_cat_heap_insert(vieter_cat_heap *cheap,
char *category, uint64_t key,
void *data) {
uint64_t i = 0;
// For now, we do a linear search through all categories. This is more than
// fast enough for most usecases.
while (i < cheap->cat_count && strcmp(category, cheap->categories[i]) != 0) {
i++;
}
if (i == cheap->cat_count) {
if (cheap->cat_count == 0) {
cheap->categories = malloc(sizeof(char *));
cheap->heaps = malloc(sizeof(vieter_heap *));
} else {
cheap->categories =
realloc(cheap->categories, sizeof(char *) * (cheap->cat_count + 1));
cheap->heaps =
realloc(cheap->heaps, sizeof(vieter_heap *) * (cheap->cat_count + 1));
}
cheap->cat_count++;
cheap->categories[i] = strdup(category);
cheap->heaps[i] = vieter_heap_init();
}
vieter_heap_insert(cheap->heaps[i], key, data);
return vieter_cat_heap_ok;
}
vieter_cat_heap_error vieter_cat_heap_pop(void **out, vieter_cat_heap *cheap,
char *category) {
uint64_t i = 0;
while (i < cheap->cat_count && strcmp(category, cheap->categories[i]) != 0) {
i++;
}
if (i == cheap->cat_count) {
return vieter_cat_heap_arch_not_found;
}
vieter_heap_error res = vieter_heap_pop(out, cheap->heaps[i]);
if (res != vieter_heap_ok) {
return vieter_cat_heap_arch_empty;
}
return vieter_cat_heap_ok;
}
vieter_cat_heap_error vieter_cat_heap_peek(void **out, vieter_cat_heap *cheap,
char *category) {
uint64_t i = 0;
while (i < cheap->cat_count && strcmp(category, cheap->categories[i]) != 0) {
i++;
}
if (i == cheap->cat_count) {
return vieter_cat_heap_arch_not_found;
}
vieter_heap_error res = vieter_heap_peek(out, cheap->heaps[i]);
if (res != vieter_heap_ok) {
return vieter_cat_heap_arch_empty;
}
return vieter_cat_heap_ok;
}

View File

@ -1,10 +0,0 @@
#include "vieter_cat_heap.h"
#include "vieter_heap.h"
#include <stdlib.h>
#include <string.h>
struct vieter_cat_heap {
uint64_t cat_count;
char **categories;
vieter_heap **heaps;
};

View File

@ -1,27 +0,0 @@
The goal of this job queue design is to process jobs in order, with each job
moving through a pipeline of tasks that need to be completed.
At any given time, a job is in one of a few given states, e.g. "queued". These
states are explained below. Along with this, each job also has a "dispatched"
flag. If this flag is set to true, it means this job is currently being
processed. "Being processed" could mean anything; it depends entirely on the
state a job's in. While a job is dispatched, it is no longer present in the
priority queue of its respective state.
## Job
A job describes a scheduled build as it moves through the pipeline of states.
The job queue datastructure keeps track of all jobs in a central red-black
binary tree. For each state, a priority queue tracks in what order jobs should
be processed.
## States
* `queued`: a job that's in the job queue but does not yet need to be executed
(as defined by its timestamp)
* `ready`: a job that's scheduled for building, with all preprocessing tasks
fulfilled.
* `build_finished`: a job whose build has finished, and is waiting for any
post-build tasks.
* `failed`: a job whose processing failed at some point. Jobs in this state
include a failure report that describes in what state they failed, and why.

View File

@ -1,24 +0,0 @@
#include "vieter_job_queue_internal.h"
vieter_job *vieter_job_init() { return calloc(1, sizeof(vieter_job)); }
void vieter_job_free(vieter_job *job) {
if (job->schedule != NULL) {
vieter_cron_expr_free(job->schedule);
}
if (job->failure_report != NULL) {
vieter_job_failure_report_free(job->failure_report);
}
free(job);
}
vieter_job_failure_report *vieter_job_failure_report_init() {
return calloc(1, sizeof(vieter_job_failure_report));
}
void vieter_job_failure_report_free(vieter_job_failure_report *report) {
free(report->msg);
free(report);
}

View File

@ -1,183 +0,0 @@
#include "vieter_job_queue_internal.h"
vieter_job_queue *vieter_job_queue_init() {
vieter_job_queue *queue = malloc(sizeof(vieter_job_queue));
queue->tree = vieter_tree_init();
for (int i = 0; i < VIETER_JOB_STATES; i++) {
if (VIETER_JOB_STATE_IS_ARCH(i)) {
queue->heaps[i].cat_heap = vieter_cat_heap_init();
} else {
queue->heaps[i].heap = vieter_heap_init();
}
}
return queue;
}
void vieter_job_queue_free(vieter_job_queue *queue) {
vieter_tree_free(queue->tree);
for (int i = 0; i < VIETER_JOB_STATES; i++) {
if (VIETER_JOB_STATE_IS_ARCH(i)) {
vieter_cat_heap_free(queue->heaps[i].cat_heap);
} else {
vieter_heap_free(queue->heaps[i].heap);
}
}
free(queue);
}
vieter_job_queue_error vieter_job_queue_insert(vieter_job_queue *queue,
vieter_job *job) {
vieter_tree_error tree_res = vieter_tree_insert(queue->tree, job->id, job);
if (tree_res != vieter_tree_ok) {
return vieter_job_queue_already_present;
}
// We assume that the initial state is not a category heap
vieter_heap_insert(queue->heaps[VIETER_JOB_INITIAL_STATE].heap,
job->next_scheduled_time, job);
job->current_state = VIETER_JOB_INITIAL_STATE;
job->dispatched = false;
job->state_transition_times[VIETER_JOB_INITIAL_STATE] = time(NULL);
return vieter_job_queue_ok;
}
vieter_job_queue_error vieter_job_queue_pop(vieter_job **out,
vieter_job_queue *queue,
vieter_job_state state) {
if (VIETER_JOB_STATE_IS_ARCH(state)) {
return vieter_job_queue_state_is_arch;
}
vieter_heap_error res =
vieter_heap_pop((void **)out, queue->heaps[state].heap);
if (res != vieter_heap_ok) {
return vieter_job_queue_state_empty;
}
(*out)->dispatched = true;
return vieter_job_queue_ok;
}
vieter_job_queue_error vieter_job_queue_pop_arch(vieter_job **out,
vieter_job_queue *queue,
vieter_job_state state,
char *arch) {
if (!VIETER_JOB_STATE_IS_ARCH(state)) {
return vieter_job_queue_state_is_not_arch;
}
vieter_cat_heap_error res =
vieter_cat_heap_pop((void **)out, queue->heaps[state].cat_heap, arch);
if (res != vieter_cat_heap_ok) {
return vieter_job_queue_state_empty;
}
(*out)->dispatched = true;
return vieter_job_queue_ok;
}
vieter_job_queue_error vieter_job_queue_transition(vieter_job_queue *queue,
uint64_t id,
vieter_job_state new_state) {
vieter_job *job;
vieter_tree_error res = vieter_tree_search((void **)&job, queue->tree, id);
if (res != vieter_tree_ok) {
return vieter_job_queue_not_present;
}
if (!job->dispatched) {
return vieter_job_queue_not_dispatched;
}
if (VIETER_JOB_STATE_IS_ARCH(new_state)) {
vieter_cat_heap_insert(queue->heaps[new_state].cat_heap, job->arch,
job->next_scheduled_time, job);
} else {
vieter_heap_insert(queue->heaps[new_state].heap, job->next_scheduled_time,
job);
}
job->current_state = new_state;
job->dispatched = false;
job->state_transition_times[new_state] = time(NULL);
return vieter_job_queue_ok;
}
vieter_job_queue_error vieter_job_queue_remove(vieter_job **out,
vieter_job_queue *queue,
uint64_t id) {
vieter_tree_error res = vieter_tree_search((void **)out, queue->tree, id);
if (res != vieter_tree_ok) {
return vieter_job_queue_not_present;
}
vieter_job *job = *out;
if (!job->dispatched) {
return vieter_job_queue_not_dispatched;
}
// This can't fail if the search succeeded
vieter_tree_remove((void **)out, queue->tree, job->id);
return vieter_job_queue_ok;
}
vieter_job_queue_error vieter_job_queue_fail(vieter_job_queue *queue,
uint64_t id,
char *report_message) {
vieter_job *job;
vieter_tree_error res = vieter_tree_search((void **)&job, queue->tree, id);
if (res != vieter_tree_ok) {
return vieter_job_queue_not_present;
}
if (!job->dispatched) {
return vieter_job_queue_not_dispatched;
}
// We assume the failure state is not categorized
vieter_heap_insert(queue->heaps[VIETER_JOB_FAILURE_STATE].heap,
job->next_scheduled_time, job);
job->dispatched = false;
job->state_transition_times[VIETER_JOB_FAILURE_STATE] = time(NULL);
job->failure_report = vieter_job_failure_report_init();
job->failure_report->failed_state = job->current_state;
job->failure_report->msg = strdup(report_message);
job->current_state = VIETER_JOB_FAILURE_STATE;
return vieter_job_queue_ok;
}
int vieter_job_queue_rlock(vieter_job_queue *job_queue) {
return pthread_rwlock_rdlock(&job_queue->lock);
}
int vieter_job_queue_wlock(vieter_job_queue *job_queue) {
return pthread_rwlock_wrlock(&job_queue->lock);
}
int vieter_job_queue_unlock(vieter_job_queue *job_queue) {
return pthread_rwlock_unlock(&job_queue->lock);
}

View File

@ -1,19 +0,0 @@
#ifndef VIETER_JOB_QUEUE_INTERNAL
#define VIETER_JOB_QUEUE_INTERNAL
#include "vieter_cat_heap.h"
#include "vieter_heap.h"
#include "vieter_job_queue.h"
#include "vieter_tree.h"
#include <pthread.h>
struct vieter_job_queue {
vieter_tree *tree;
union {
vieter_heap *heap;
vieter_cat_heap *cat_heap;
} heaps[VIETER_JOB_STATES];
pthread_rwlock_t lock;
};
#endif

View File

@ -114,15 +114,3 @@ bool vieter_tree_validate(vieter_tree *tree) {
return vieter_tree_node_get(tree->root, vieter_tree_node_black) && return vieter_tree_node_get(tree->root, vieter_tree_node_black) &&
vieter_tree_node_validate(tree->root, 0, expected_black_nodes); vieter_tree_node_validate(tree->root, 0, expected_black_nodes);
} }
int vieter_tree_rlock(vieter_tree *tree) {
return pthread_rwlock_rdlock(&tree->lock);
}
int vieter_tree_wlock(vieter_tree *tree) {
return pthread_rwlock_wrlock(&tree->lock);
}
int vieter_tree_unlock(vieter_tree *tree) {
return pthread_rwlock_unlock(&tree->lock);
}

View File

@ -1,13 +1,11 @@
#include "vieter_tree.h" #include "vieter_tree.h"
#include "vieter_tree_node.h" #include "vieter_tree_node.h"
#include <pthread.h>
#include <stdbool.h> #include <stdbool.h>
struct vieter_tree { struct vieter_tree {
uint64_t size; uint64_t size;
vieter_tree_node *root; vieter_tree_node *root;
pthread_rwlock_t lock;
}; };
/* /*

View File

@ -1,52 +0,0 @@
#include "acutest.h"
#include "vieter_cat_heap_internal.h"
#define TEST_SIZE(cheap, size) \
TEST_CHECK(vieter_cat_heap_size(cheap) == size); \
TEST_MSG("Size: %zu, expected: %lu", vieter_cat_heap_size(cheap), (uint64_t)size)
void test_init() {
vieter_cat_heap *cheap = vieter_cat_heap_init();
TEST_CHECK(cheap != NULL);
TEST_SIZE(cheap, 0);
vieter_cat_heap_free(cheap);
}
void test_insert() {
vieter_cat_heap *cheap = vieter_cat_heap_init();
TEST_SIZE(cheap, 0);
void *data;
for (uint64_t i = 50; i > 0; i--) {
vieter_cat_heap_insert(cheap, "cat1", i, (void *)i);
TEST_SIZE(cheap, (uint64_t)51 - i);
data = 0;
TEST_CHECK(vieter_cat_heap_peek(&data, cheap, "cat1") == vieter_cat_heap_ok);
TEST_CHECK_(data == (void *)i, "%lX == %lX", (uint64_t)data, i);
}
for (uint64_t i = 50; i > 0; i--) {
vieter_cat_heap_insert(cheap, "cat2", i, (void *)i);
TEST_SIZE(cheap, (uint64_t)101 - i);
data = 0;
TEST_CHECK(vieter_cat_heap_peek(&data, cheap, "cat2") == vieter_cat_heap_ok);
TEST_CHECK_(data == (void *)i, "%lX == %lX", (uint64_t)data, i);
}
vieter_cat_heap_free(cheap);
}
TEST_LIST = {
{"cat heap init", test_init},
{"cat heap insert", test_insert},
/* {"heap insert random", test_insert_random}, */
/* {"heap pop", test_pop}, */
/* {"heap pop random", test_pop_random}, */
{NULL, NULL}
};

View File

@ -1,23 +0,0 @@
#include "acutest.h"
#include "vieter_job_queue_internal.h"
void test_init() {
vieter_job_queue *queue = vieter_job_queue_init();
TEST_CHECK(queue != NULL);
vieter_job_queue_free(queue);
}
void test_job_path() {
vieter_job_queue *queue = vieter_job_queue_init();
TEST_CHECK(queue != NULL);
vieter_job *job = vieter_job_init();
job->next_scheduled_time = 5;
vieter_job_queue_free(queue);
}
TEST_LIST = {
{"job queue init", test_init},
{NULL, NULL}
};