v/vlib/builtin/array.v

737 lines
17 KiB
V
Raw Normal View History

// Copyright (c) 2019-2021 Alexander Medvednikov. All rights reserved.
2019-06-23 04:21:30 +02:00
// Use of this source code is governed by an MIT license
// that can be found in the LICENSE file.
2019-06-22 20:20:28 +02:00
module builtin
import strings
2019-08-10 23:02:48 +02:00
// array is a struct used for denoting array types in V
2020-01-12 19:59:57 +01:00
pub struct array {
pub:
element_size int // size in bytes of one element in the array.
pub mut:
data voidptr
len int // length of the array.
cap int // capacity of the array.
2019-06-22 20:20:28 +02:00
}
// array.data uses a void pointer, which allows implementing arrays without generics and without generating
// extra code for every type.
// Internal function, used by V (`nums := []int`)
2020-04-25 08:42:23 +02:00
fn __new_array(mylen int, cap int, elm_size int) array {
cap_ := if cap < mylen { mylen } else { cap }
2019-12-18 18:07:32 +01:00
arr := array{
element_size: elm_size
data: vcalloc(cap_ * elm_size)
2020-05-18 21:38:06 +02:00
len: mylen
cap: cap_
2019-06-22 20:20:28 +02:00
}
return arr
}
2020-04-15 20:12:06 +02:00
2020-05-16 15:21:37 +02:00
fn __new_array_with_default(mylen int, cap int, elm_size int, val voidptr) array {
cap_ := if cap < mylen { mylen } else { cap }
mut arr := array{
element_size: elm_size
data: vcalloc(cap_ * elm_size)
2020-05-18 21:38:06 +02:00
len: mylen
cap: cap_
2020-05-16 15:21:37 +02:00
}
if val != 0 {
for i in 0 .. arr.len {
unsafe { arr.set_unsafe(i, val) }
2020-05-16 15:21:37 +02:00
}
}
return arr
}
2020-06-12 01:24:25 +02:00
fn __new_array_with_array_default(mylen int, cap int, elm_size int, val array) array {
cap_ := if cap < mylen { mylen } else { cap }
mut arr := array{
2020-06-12 01:24:25 +02:00
element_size: elm_size
data: vcalloc(cap_ * elm_size)
len: mylen
cap: cap_
}
for i in 0 .. arr.len {
2020-06-12 01:24:25 +02:00
val_clone := val.clone()
unsafe { arr.set_unsafe(i, &val_clone) }
2020-06-12 01:24:25 +02:00
}
return arr
}
2019-06-22 20:20:28 +02:00
// Private function, used by V (`nums := [1, 2, 3]`)
fn new_array_from_c_array(len int, cap int, elm_size int, c_array voidptr) array {
cap_ := if cap < len { len } else { cap }
2019-12-18 18:07:32 +01:00
arr := array{
element_size: elm_size
data: vcalloc(cap_ * elm_size)
2020-05-18 21:38:06 +02:00
len: len
cap: cap_
2019-06-22 20:20:28 +02:00
}
// TODO Write all memory functions (like memcpy) in V
unsafe { C.memcpy(arr.data, c_array, len * elm_size) }
2019-06-22 20:20:28 +02:00
return arr
}
// Private function, used by V (`nums := [1, 2, 3] !`)
fn new_array_from_c_array_no_alloc(len int, cap int, elm_size int, c_array voidptr) array {
2019-12-18 18:07:32 +01:00
arr := array{
element_size: elm_size
data: c_array
2020-05-18 21:38:06 +02:00
len: len
cap: cap
2019-06-22 20:20:28 +02:00
}
return arr
}
// Private function. Doubles array capacity if needed.
2020-04-27 07:39:33 +02:00
[inline]
2020-05-17 13:51:18 +02:00
fn (mut a array) ensure_cap(required int) {
2020-01-19 13:11:58 +01:00
if required <= a.cap {
return
}
mut cap := if a.cap > 0 { a.cap } else { 2 }
2020-01-19 13:11:58 +01:00
for required > cap {
cap *= 2
}
new_size := cap * a.element_size
mut new_data := byteptr(0)
if a.cap > 0 {
new_data = v_realloc(a.data, new_size)
} else {
new_data = vcalloc(new_size)
2020-01-19 13:11:58 +01:00
}
a.data = new_data
2020-01-19 13:11:58 +01:00
a.cap = cap
}
// repeat returns a new array with the given array elements repeated given times.
2020-02-29 15:25:49 +01:00
pub fn (a array) repeat(count int) array {
if count < 0 {
panic('array.repeat: count is negative: $count')
}
2020-02-29 15:25:49 +01:00
mut size := count * a.len * a.element_size
2019-12-16 20:22:04 +01:00
if size == 0 {
size = a.element_size
}
2019-12-18 18:07:32 +01:00
arr := array{
element_size: a.element_size
data: vcalloc(size)
2020-05-18 21:38:06 +02:00
len: count * a.len
cap: count * a.len
2019-09-14 22:48:30 +02:00
}
size_of_array := int(sizeof(array))
for i in 0 .. count {
if a.len > 0 && a.element_size == size_of_array {
ary := array{}
unsafe { C.memcpy(&ary, a.data, size_of_array) }
ary_clone := ary.clone()
unsafe { C.memcpy(arr.get_unsafe(i * a.len), &ary_clone, a.len * a.element_size) }
} else {
unsafe { C.memcpy(arr.get_unsafe(i * a.len), byteptr(a.data), a.len * a.element_size) }
}
2019-09-14 22:48:30 +02:00
}
return arr
}
// sort sorts array in-place using given `compare` function as comparator.
2020-05-17 13:51:18 +02:00
pub fn (mut a array) sort_with_compare(compare voidptr) {
C.qsort(mut a.data, a.len, a.element_size, compare)
2019-06-22 20:20:28 +02:00
}
// insert inserts a value in the array at index `i`
2020-05-17 13:51:18 +02:00
pub fn (mut a array) insert(i int, val voidptr) {
$if !no_bounds_checking ? {
if i < 0 || i > a.len {
panic('array.insert: index out of range (i == $i, a.len == $a.len)')
}
2019-06-22 20:20:28 +02:00
}
a.ensure_cap(a.len + 1)
unsafe {
C.memmove(a.get_unsafe(i + 1), a.get_unsafe(i), (a.len - i) * a.element_size)
a.set_unsafe(i, val)
}
a.len++
2019-06-22 20:20:28 +02:00
}
// insert_many inserts many values into the array from index `i`.
pub fn (mut a array) insert_many(i int, val voidptr, size int) {
$if !no_bounds_checking ? {
if i < 0 || i > a.len {
panic('array.insert_many: index out of range (i == $i, a.len == $a.len)')
}
}
a.ensure_cap(a.len + size)
elem_size := a.element_size
unsafe {
iptr := a.get_unsafe(i)
C.memmove(a.get_unsafe(i + size), iptr, (a.len - i) * elem_size)
C.memcpy(iptr, val, size * elem_size)
}
a.len += size
}
// prepend prepends one value to the array.
2020-05-17 13:51:18 +02:00
pub fn (mut a array) prepend(val voidptr) {
2019-06-22 20:20:28 +02:00
a.insert(0, val)
}
// prepend_many prepends another array to this array.
pub fn (mut a array) prepend_many(val voidptr, size int) {
a.insert_many(0, val, size)
}
// delete deletes array element at index `i`.
2020-05-17 13:51:18 +02:00
pub fn (mut a array) delete(i int) {
$if !no_bounds_checking ? {
if i < 0 || i >= a.len {
panic('array.delete: index out of range (i == $i, a.len == $a.len)')
}
}
2020-06-12 01:24:25 +02:00
// NB: if a is [12,34], a.len = 2, a.delete(0)
2020-05-24 10:10:41 +02:00
// should move (2-0-1) elements = 1 element (the 34) forward
unsafe { C.memmove(a.get_unsafe(i), a.get_unsafe(i + 1), (a.len - i - 1) * a.element_size) }
2019-06-22 20:20:28 +02:00
a.len--
}
// clear clears the array without deallocating the allocated data.
2020-05-17 13:51:18 +02:00
pub fn (mut a array) clear() {
2020-01-27 22:31:48 +01:00
a.len = 0
}
// trim trims the array length to "index" without modifying the allocated data. If "index" is greater
// than len nothing will be changed.
2020-05-17 13:51:18 +02:00
pub fn (mut a array) trim(index int) {
2020-02-17 20:31:40 +01:00
if index < a.len {
a.len = index
}
}
// we manually inline this for single operations for performance without -prod
[inline]
[unsafe]
fn (a array) get_unsafe(i int) voidptr {
unsafe {
return byteptr(a.data) + i * a.element_size
}
}
// Private function. Used to implement array[] operator.
fn (a array) get(i int) voidptr {
$if !no_bounds_checking ? {
if i < 0 || i >= a.len {
panic('array.get: index out of range (i == $i, a.len == $a.len)')
}
}
unsafe {
return byteptr(a.data) + i * a.element_size
}
}
// first returns the first element of the array.
pub fn (a array) first() voidptr {
$if !no_bounds_checking ? {
if a.len == 0 {
panic('array.first: array is empty')
}
2019-06-22 20:20:28 +02:00
}
2020-04-02 15:31:44 +02:00
return a.data
2019-06-22 20:20:28 +02:00
}
// last returns the last element of the array.
pub fn (a array) last() voidptr {
$if !no_bounds_checking ? {
if a.len == 0 {
panic('array.last: array is empty')
}
2019-06-22 20:20:28 +02:00
}
unsafe {
return byteptr(a.data) + (a.len - 1) * a.element_size
}
2019-06-22 20:20:28 +02:00
}
// pop returns the last element of the array, and removes it.
2020-07-14 18:55:44 +02:00
pub fn (mut a array) pop() voidptr {
// in a sense, this is the opposite of `a << x`
$if !no_bounds_checking ? {
2020-07-14 18:55:44 +02:00
if a.len == 0 {
panic('array.pop: array is empty')
}
}
new_len := a.len - 1
last_elem := unsafe { byteptr(a.data) + (new_len) * a.element_size }
2020-07-14 18:55:44 +02:00
a.len = new_len
// NB: a.cap is not changed here *on purpose*, so that
// further << ops on that array will be more efficient.
return memdup(last_elem, a.element_size)
}
// delete_last efficiently deletes the last element of the array.
pub fn (mut a array) delete_last() {
// copy pasting code for performance
$if !no_bounds_checking ? {
if a.len == 0 {
panic('array.pop: array is empty')
}
}
a.len--
}
// slice returns an array using the same buffer as original array
// but starting from the `start` element and ending with the element before
// the `end` element of the original array with the length and capacity
// set to the number of the elements in the slice.
fn (a array) slice(start int, _end int) array {
2019-12-16 23:29:40 +01:00
mut end := _end
$if !no_bounds_checking ? {
if start > end {
panic('array.slice: invalid slice index ($start > $end)')
}
if end > a.len {
panic('array.slice: slice bounds out of range ($end >= $a.len)')
}
if start < 0 {
panic('array.slice: slice bounds out of range ($start < 0)')
}
2019-12-16 23:29:40 +01:00
}
mut data := byteptr(0)
unsafe {
data = byteptr(a.data) + start * a.element_size
}
2019-12-16 23:29:40 +01:00
l := end - start
2019-12-18 18:07:32 +01:00
res := array{
2019-12-16 23:29:40 +01:00
element_size: a.element_size
data: data
2019-12-16 23:29:40 +01:00
len: l
cap: l
}
return res
}
2020-01-08 10:19:12 +01:00
// used internally for [2..4]
fn (a array) slice2(start int, _end int, end_max bool) array {
2020-01-08 10:19:12 +01:00
end := if end_max { a.len } else { _end }
return a.slice(start, end)
}
// clone_static returns an independent copy of a given array
// It should be used only in -autofree generated code.
fn (a array) clone_static() array {
return a.clone()
}
// clone returns an independent copy of a given array.
2020-03-10 23:21:26 +01:00
pub fn (a &array) clone() array {
2020-01-08 10:19:12 +01:00
mut size := a.cap * a.element_size
if size == 0 {
size++
}
mut arr := array{
element_size: a.element_size
data: vcalloc(size)
2020-05-18 21:38:06 +02:00
len: a.len
cap: a.cap
2020-01-08 10:19:12 +01:00
}
2020-06-19 13:32:55 +02:00
// Recursively clone-generated elements if array element is array type
size_of_array := int(sizeof(array))
if a.element_size == size_of_array {
for i in 0 .. a.len {
2020-06-19 13:32:55 +02:00
ar := array{}
unsafe { C.memcpy(&ar, a.get_unsafe(i), size_of_array) }
2020-06-19 13:32:55 +02:00
ar_clone := ar.clone()
unsafe { arr.set_unsafe(i, &ar_clone) }
2020-06-19 13:32:55 +02:00
}
} else {
if !isnil(a.data) {
unsafe { C.memcpy(byteptr(arr.data), a.data, a.cap * a.element_size) }
}
2020-06-19 13:32:55 +02:00
}
2020-01-08 10:19:12 +01:00
return arr
}
fn (a &array) slice_clone(start int, _end int) array {
2019-06-22 20:20:28 +02:00
mut end := _end
$if !no_bounds_checking ? {
if start > end {
panic('array.slice: invalid slice index ($start > $end)')
}
if end > a.len {
panic('array.slice: slice bounds out of range ($end >= $a.len)')
}
if start < 0 {
panic('array.slice: slice bounds out of range ($start < 0)')
}
2019-06-22 20:20:28 +02:00
}
mut data := byteptr(0)
unsafe {
data = byteptr(a.data) + start * a.element_size
}
2019-06-22 20:20:28 +02:00
l := end - start
2019-12-18 18:07:32 +01:00
res := array{
element_size: a.element_size
data: data
2019-06-22 20:20:28 +02:00
len: l
cap: l
}
2019-12-16 23:21:10 +01:00
return res.clone()
2019-06-22 20:20:28 +02:00
}
// we manually inline this for single operations for performance without -prod
[inline]
[unsafe]
fn (mut a array) set_unsafe(i int, val voidptr) {
unsafe { C.memcpy(byteptr(a.data) + a.element_size * i, val, a.element_size) }
}
// Private function. Used to implement assigment to the array element.
2020-05-17 13:51:18 +02:00
fn (mut a array) set(i int, val voidptr) {
$if !no_bounds_checking ? {
if i < 0 || i >= a.len {
panic('array.set: index out of range (i == $i, a.len == $a.len)')
}
2019-06-22 20:20:28 +02:00
}
unsafe { C.memcpy(byteptr(a.data) + a.element_size * i, val, a.element_size) }
2019-06-22 20:20:28 +02:00
}
2020-05-17 13:51:18 +02:00
fn (mut a array) push(val voidptr) {
a.ensure_cap(a.len + 1)
unsafe { C.memmove(byteptr(a.data) + a.element_size * a.len, val, a.element_size) }
a.len++
}
// `val` is array.data
// TODO make private, right now it's used by strings.Builder
2020-05-17 13:51:18 +02:00
pub fn (mut a3 array) push_many(val voidptr, size int) {
if a3.data == val && !isnil(a3.data) {
2020-03-08 22:11:56 +01:00
// handle `arr << arr`
copy := a3.clone()
a3.ensure_cap(a3.len + size)
unsafe {
// C.memcpy(a.data, copy.data, copy.element_size * copy.len)
C.memcpy(a3.get_unsafe(a3.len), copy.data, a3.element_size * size)
}
2020-01-19 13:11:58 +01:00
} else {
2020-03-08 22:11:56 +01:00
a3.ensure_cap(a3.len + size)
if !isnil(a3.data) && !isnil(val) {
unsafe { C.memcpy(a3.get_unsafe(a3.len), val, a3.element_size * size) }
}
2020-01-19 13:11:58 +01:00
}
2020-03-08 22:11:56 +01:00
a3.len += size
}
// reverse_in_place reverses existing array data, modifying original array.
pub fn (mut a array) reverse_in_place() {
if a.len < 2 {
return
}
unsafe {
mut tmp_value := malloc(a.element_size)
for i in 0 .. a.len / 2 {
C.memcpy(tmp_value, byteptr(a.data) + i * a.element_size, a.element_size)
C.memcpy(byteptr(a.data) + i * a.element_size, byteptr(a.data) + (a.len - 1 - i) *
a.element_size, a.element_size)
C.memcpy(byteptr(a.data) + (a.len - 1 - i) * a.element_size, tmp_value, a.element_size)
}
free(tmp_value)
}
}
// reverse returns a new array with the elements of the original array in reverse order.
2019-07-17 18:17:07 +02:00
pub fn (a array) reverse() array {
2020-02-29 20:44:02 +01:00
if a.len < 2 {
return a
}
mut arr := array{
element_size: a.element_size
data: vcalloc(a.cap * a.element_size)
2020-05-18 21:38:06 +02:00
len: a.len
cap: a.cap
2019-07-17 18:17:07 +02:00
}
for i in 0 .. a.len {
unsafe { arr.set_unsafe(i, a.get_unsafe(a.len - 1 - i)) }
2019-07-17 18:17:07 +02:00
}
return arr
}
2019-12-18 18:07:32 +01:00
// pub fn (a []int) free() {
// free frees all memory occupied by the array.
2020-08-09 11:22:11 +02:00
[unsafe]
pub fn (a &array) free() {
2020-07-11 13:22:16 +02:00
$if prealloc {
return
}
2019-12-18 18:07:32 +01:00
// if a.is_slice {
// return
// }
2019-06-22 20:20:28 +02:00
C.free(a.data)
}
// str returns a string representation of the array of strings
// => '["a", "b", "c"]'.
2019-06-30 13:06:46 +02:00
pub fn (a []string) str() string {
2019-08-31 01:35:05 +02:00
mut sb := strings.new_builder(a.len * 3)
sb.write('[')
for i in 0 .. a.len {
2019-06-22 20:20:28 +02:00
val := a[i]
2021-01-13 06:05:27 +01:00
sb.write("'")
2019-09-14 22:48:30 +02:00
sb.write(val)
2021-01-13 06:05:27 +01:00
sb.write("'")
2019-06-22 20:20:28 +02:00
if i < a.len - 1 {
2019-08-31 01:35:05 +02:00
sb.write(', ')
2019-06-22 20:20:28 +02:00
}
}
2019-08-31 01:35:05 +02:00
sb.write(']')
return sb.str()
2019-06-22 20:20:28 +02:00
}
// hex returns a string with the hexadecimal representation
// of the byte elements of the array.
2019-07-15 17:49:01 +02:00
pub fn (b []byte) hex() string {
2019-12-18 18:07:32 +01:00
mut hex := malloc(b.len * 2 + 1)
mut dst_i := 0
for i in b {
2020-03-18 16:47:37 +01:00
n0 := i >> 4
unsafe {
hex[dst_i++] = if n0 < 10 { n0 + `0` } else { n0 + byte(87) }
}
n1 := i & 0xF
unsafe {
hex[dst_i++] = if n1 < 10 { n1 + `0` } else { n1 + byte(87) }
}
}
unsafe {
hex[dst_i] = `\0`
return tos(hex, dst_i)
}
2019-07-15 17:49:01 +02:00
}
2019-07-28 17:19:59 +02:00
// copy copies the `src` byte array elements to the `dst` byte array.
// The number of the elements copied is the minimum of the length of both arrays.
// Returns the number of elements copied.
2019-07-28 17:19:59 +02:00
// TODO: implement for all types
pub fn copy(dst []byte, src []byte) int {
2019-07-28 17:19:59 +02:00
if dst.len > 0 && src.len > 0 {
2020-02-02 14:31:54 +01:00
mut min := 0
min = if dst.len < src.len { dst.len } else { src.len }
unsafe { C.memcpy(byteptr(dst.data), src[..min].data, dst.element_size * min) }
2019-07-28 17:19:59 +02:00
return min
}
return 0
}
2019-09-01 19:55:34 +02:00
// Private function. Comparator for int type.
fn compare_ints(a &int, b &int) int {
2019-11-18 22:27:27 +01:00
if *a < *b {
2019-09-01 19:55:34 +02:00
return -1
}
2019-11-18 22:27:27 +01:00
if *a > *b {
2019-09-01 19:55:34 +02:00
return 1
}
return 0
}
fn compare_ints_reverse(a &int, b &int) int {
if *a > *b {
2020-12-05 22:14:14 +01:00
return -1
}
if *a < *b {
return 1
}
return 0
}
fn compare_u64s(a &u64, b &u64) int {
if *a < *b {
return -1
}
if *a > *b {
return 1
}
return 0
}
fn compare_u64s_reverse(a &u64, b &u64) int {
if *a > *b {
return -1
}
if *a < *b {
return 1
}
return 0
}
fn compare_floats(a &f64, b &f64) int {
2020-08-12 05:54:51 +02:00
if *a < *b {
return -1
}
if *a > *b {
return 1
}
return 0
}
fn compare_floats_reverse(a &f64, b &f64) int {
if *a > *b {
return -1
}
if *a < *b {
return 1
}
return 0
}
// sort sorts array of int in place in ascending order.
2020-05-17 13:51:18 +02:00
pub fn (mut a []int) sort() {
2019-09-01 19:55:34 +02:00
a.sort_with_compare(compare_ints)
}
2019-10-04 22:07:19 +02:00
// index returns the first index at which a given element can be found in the array
// or -1 if the value is not found.
2019-10-04 22:07:19 +02:00
pub fn (a []string) index(v string) int {
for i in 0 .. a.len {
2019-10-04 22:07:19 +02:00
if a[i] == v {
return i
}
}
return -1
}
// reduce executes a given reducer function on each element of the array,
2019-10-11 03:12:40 +02:00
// resulting in a single output value.
pub fn (a []int) reduce(iter fn (int, int) int, accum_start int) int {
mut accum_ := accum_start
for i in a {
accum_ = iter(accum_, i)
2019-10-11 03:12:40 +02:00
}
return accum_
2019-10-11 03:12:40 +02:00
}
// grow_cap grows the array's capacity by `amount` elements.
pub fn (mut a array) grow_cap(amount int) {
a.ensure_cap(a.cap + amount)
}
// grow_len ensures that an array has a.len + amount of length
pub fn (mut a array) grow_len(amount int) {
a.ensure_cap(a.len + amount)
a.len += amount
}
// array_eq<T> checks if two arrays contain all the same elements in the same order.
// []int == []int (also for: i64, f32, f64, byte, string)
2020-02-18 18:13:34 +01:00
/*
fn array_eq<T>(a1, a2 []T) bool {
if a1.len != a2.len {
return false
}
for i in 0..a1.len {
if a1[i] != a2[i] {
return false
}
}
return true
}
2019-10-31 11:08:01 +01:00
pub fn (a []int) eq(a2 []int) bool {
return array_eq(a, a2)
}
2019-10-31 11:08:01 +01:00
pub fn (a []i64) eq(a2 []i64) bool {
return array_eq(a, a2)
}
2019-10-31 11:08:01 +01:00
pub fn (a []byte) eq(a2 []byte) bool {
return array_eq(a, a2)
}
2019-10-31 11:08:01 +01:00
pub fn (a []f32) eq(a2 []f32) bool {
return array_eq(a, a2)
}
2020-02-18 18:13:34 +01:00
*/
// eq checks if the arrays have the same elements or not.
// TODO: make it work with all types.
2020-02-18 20:31:08 +01:00
pub fn (a1 []string) eq(a2 []string) bool {
// return array_eq(a, a2)
2020-02-18 20:31:08 +01:00
if a1.len != a2.len {
return false
}
for i in 0 .. a1.len {
2020-02-18 20:31:08 +01:00
if a1[i] != a2[i] {
return false
}
}
return true
}
2020-01-21 18:49:30 +01:00
// compare_i64 for []f64 sort_with_compare()
// sort []i64 with quicksort
// usage :
// mut x := [i64(100),10,70,28,92]
// x.sort_with_compare(compare_i64)
// println(x) // Sorted i64 Array
// output:
// [10, 28, 70, 92, 100]
pub fn compare_i64(a &i64, b &i64) int {
2020-01-21 18:49:30 +01:00
if *a < *b {
return -1
}
if *a > *b {
return 1
}
return 0
}
// compare_f64 for []f64 sort_with_compare()
// ref. compare_i64(...)
pub fn compare_f64(a &f64, b &f64) int {
2020-01-21 18:49:30 +01:00
if *a < *b {
return -1
}
if *a > *b {
return 1
}
return 0
}
// compare_f32 for []f32 sort_with_compare()
// ref. compare_i64(...)
pub fn compare_f32(a &f32, b &f32) int {
2020-01-21 18:49:30 +01:00
if *a < *b {
return -1
}
if *a > *b {
return 1
}
return 0
}
// pointers returns a new array, where each element
// is the address of the corresponding element in the array.
pub fn (a array) pointers() []voidptr {
mut res := []voidptr{}
for i in 0 .. a.len {
unsafe { res << a.get_unsafe(i) }
}
return res
}
// voidptr.vbytes() - makes a V []byte structure from a C style memory buffer. NB: the data is reused, NOT copied!
[unsafe]
pub fn (data voidptr) vbytes(len int) []byte {
res := array{
element_size: 1
data: data
len: len
cap: len
}
return res
}
// byteptr.vbytes() - makes a V []byte structure from a C style memory buffer. NB: the data is reused, NOT copied!
[unsafe]
pub fn (data byteptr) vbytes(len int) []byte {
return unsafe { voidptr(data).vbytes(len) }
}