2021-08-22 23:35:28 +02:00
|
|
|
module math
|
|
|
|
|
|
|
|
const (
|
|
|
|
pow10tab = [f64(1e+00), 1e+01, 1e+02, 1e+03, 1e+04, 1e+05, 1e+06, 1e+07, 1e+08, 1e+09,
|
|
|
|
1e+10, 1e+11, 1e+12, 1e+13, 1e+14, 1e+15, 1e+16, 1e+17, 1e+18, 1e+19, 1e+20, 1e+21, 1e+22,
|
|
|
|
1e+23, 1e+24, 1e+25, 1e+26, 1e+27, 1e+28, 1e+29, 1e+30, 1e+31]
|
|
|
|
pow10postab32 = [f64(1e+00), 1e+32, 1e+64, 1e+96, 1e+128, 1e+160, 1e+192, 1e+224, 1e+256, 1e+288]
|
|
|
|
pow10negtab32 = [f64(1e-00), 1e-32, 1e-64, 1e-96, 1e-128, 1e-160, 1e-192, 1e-224, 1e-256, 1e-288,
|
2021-09-21 15:20:09 +02:00
|
|
|
1e-320]
|
2021-08-22 23:35:28 +02:00
|
|
|
)
|
|
|
|
|
|
|
|
// powf returns base raised to the provided power. (float32)
|
|
|
|
[inline]
|
|
|
|
pub fn powf(a f32, b f32) f32 {
|
|
|
|
return f32(pow(a, b))
|
|
|
|
}
|
|
|
|
|
|
|
|
// pow10 returns 10**n, the base-10 exponential of n.
|
|
|
|
//
|
|
|
|
// special cases are:
|
|
|
|
// pow10(n) = 0 for n < -323
|
|
|
|
// pow10(n) = +inf for n > 308
|
|
|
|
pub fn pow10(n int) f64 {
|
|
|
|
if 0 <= n && n <= 308 {
|
|
|
|
return math.pow10postab32[u32(n) / 32] * math.pow10tab[u32(n) % 32]
|
|
|
|
}
|
|
|
|
if -323 <= n && n <= 0 {
|
|
|
|
return math.pow10negtab32[u32(-n) / 32] / math.pow10tab[u32(-n) % 32]
|
|
|
|
}
|
|
|
|
// n < -323 || 308 < n
|
|
|
|
if n > 0 {
|
|
|
|
return inf(1)
|
|
|
|
}
|
|
|
|
// n < -323
|
|
|
|
return 0.0
|
|
|
|
}
|
2021-10-08 16:44:55 +02:00
|
|
|
|
2021-10-08 21:07:44 +02:00
|
|
|
// powi returns base raised to power (a**b) as an integer (i64)
|
|
|
|
//
|
|
|
|
// special case:
|
|
|
|
// powi(a, b) = -1 for a = 0 and b < 0
|
|
|
|
pub fn powi(a i64, b i64) i64 {
|
|
|
|
mut b_ := b
|
|
|
|
mut p := a
|
|
|
|
mut v := i64(1)
|
|
|
|
|
|
|
|
if b_ < 0 { // exponent < 0
|
|
|
|
if a == 0 {
|
|
|
|
return -1 // division by 0
|
|
|
|
}
|
|
|
|
return if a * a != 1 {
|
|
|
|
0
|
|
|
|
} else {
|
|
|
|
if (b_ & 1) > 0 {
|
|
|
|
a
|
|
|
|
} else {
|
|
|
|
1
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
for ; b_ > 0; {
|
|
|
|
if b_ & 1 > 0 {
|
|
|
|
v *= p
|
|
|
|
}
|
|
|
|
p *= p
|
|
|
|
b_ >>= 1
|
|
|
|
}
|
|
|
|
|
|
|
|
return v
|
|
|
|
}
|
|
|
|
|
2021-10-08 16:44:55 +02:00
|
|
|
// pow returns base raised to the provided power.
|
|
|
|
//
|
|
|
|
// todo(playXE): make this function work on JS backend, probably problem of JS codegen that it does not work.
|
|
|
|
pub fn pow(x f64, y f64) f64 {
|
|
|
|
if y == 0 || x == 1 {
|
|
|
|
return 1
|
|
|
|
} else if y == 1 {
|
|
|
|
return x
|
|
|
|
} else if is_nan(x) || is_nan(y) {
|
|
|
|
return nan()
|
|
|
|
} else if x == 0 {
|
|
|
|
if y < 0 {
|
|
|
|
if is_odd_int(y) {
|
|
|
|
return copysign(inf(1), x)
|
|
|
|
}
|
|
|
|
return inf(1)
|
|
|
|
} else if y > 0 {
|
|
|
|
if is_odd_int(y) {
|
|
|
|
return x
|
|
|
|
}
|
|
|
|
return 0
|
|
|
|
}
|
|
|
|
} else if is_inf(y, 0) {
|
|
|
|
if x == -1 {
|
|
|
|
return 1
|
|
|
|
} else if (abs(x) < 1) == is_inf(y, 1) {
|
|
|
|
return 0
|
|
|
|
} else {
|
|
|
|
return inf(1)
|
|
|
|
}
|
|
|
|
} else if is_inf(x, 0) {
|
|
|
|
if is_inf(x, -1) {
|
|
|
|
return pow(1 / x, -y)
|
|
|
|
}
|
|
|
|
|
|
|
|
if y < 0 {
|
|
|
|
return 0
|
|
|
|
} else if y > 0 {
|
|
|
|
return inf(1)
|
|
|
|
}
|
|
|
|
} else if y == 0.5 {
|
|
|
|
return sqrt(x)
|
|
|
|
} else if y == -0.5 {
|
|
|
|
return 1 / sqrt(x)
|
|
|
|
}
|
|
|
|
mut yi, mut yf := modf(abs(y))
|
|
|
|
|
|
|
|
if yf != 0 && x < 0 {
|
|
|
|
return nan()
|
|
|
|
}
|
|
|
|
if yi >= (u64(1) << 63) {
|
|
|
|
// yi is a large even int that will lead to overflow (or underflow to 0)
|
|
|
|
// for all x except -1 (x == 1 was handled earlier)
|
|
|
|
|
|
|
|
if x == -1 {
|
|
|
|
return 1
|
|
|
|
} else if (abs(x) < 1) == (y > 0) {
|
|
|
|
return 0
|
|
|
|
} else {
|
|
|
|
return inf(1)
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// ans = a1 * 2**ae (= 1 for now).
|
|
|
|
mut a1 := 1.0
|
|
|
|
mut ae := 0
|
|
|
|
|
|
|
|
// ans *= x**yf
|
|
|
|
if yf != 0 {
|
|
|
|
if yf > 0.5 {
|
|
|
|
yf--
|
|
|
|
yi++
|
|
|
|
}
|
|
|
|
|
|
|
|
a1 = exp(yf * log(x))
|
|
|
|
}
|
|
|
|
|
|
|
|
// ans *= x**yi
|
|
|
|
// by multiplying in successive squarings
|
|
|
|
// of x according to bits of yi.
|
|
|
|
// accumulate powers of two into exp.
|
|
|
|
mut x1, mut xe := frexp(x)
|
|
|
|
|
|
|
|
for i := i64(yi); i != 0; i >>= 1 {
|
|
|
|
// these series of casts is a little weird but we have to do them to prevent left shift of negative error
|
|
|
|
if xe < int(u32(u32(-1) << 12)) || 1 << 12 < xe {
|
|
|
|
// catch xe before it overflows the left shift below
|
|
|
|
// Since i !=0 it has at least one bit still set, so ae will accumulate xe
|
|
|
|
// on at least one more iteration, ae += xe is a lower bound on ae
|
|
|
|
// the lower bound on ae exceeds the size of a float64 exp
|
|
|
|
// so the final call to Ldexp will produce under/overflow (0/Inf)
|
|
|
|
ae += xe
|
|
|
|
break
|
|
|
|
}
|
|
|
|
if i & 1 == 1 {
|
|
|
|
a1 *= x1
|
|
|
|
ae += xe
|
|
|
|
}
|
|
|
|
x1 *= x1
|
|
|
|
xe <<= 1
|
|
|
|
if x1 < .5 {
|
|
|
|
x1 += x1
|
|
|
|
xe--
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// ans = a1*2**ae
|
|
|
|
// if y < 0 { ans = 1 / ans }
|
|
|
|
// but in the opposite order
|
|
|
|
if y < 0 {
|
|
|
|
a1 = 1 / a1
|
|
|
|
ae = -ae
|
|
|
|
}
|
|
|
|
return ldexp(a1, ae)
|
|
|
|
}
|