887 lines
28 KiB
Markdown
887 lines
28 KiB
Markdown
# V RegEx (Regular expression) 1.0 alpha
|
|
|
|
[TOC]
|
|
|
|
## Introduction
|
|
|
|
Here are the assumptions made during the writing of the implementation, that
|
|
are valid for all the `regex` module features:
|
|
|
|
1. The matching stops at the end of the string, *not* at newline characters.
|
|
|
|
2. The basic atomic elements of this regex engine are the tokens.
|
|
In a query string a simple character is a token.
|
|
|
|
|
|
## Differences with PCRE:
|
|
|
|
NB: We must point out that the **V-Regex module is not PCRE compliant** and thus
|
|
some behaviour will be different. This difference is due to the V philosophy,
|
|
to have one way and keep it simple.
|
|
|
|
The main differences can be summarized in the following points:
|
|
|
|
- The basic element **is the token not the sequence of symbols**, and the most
|
|
simple token, is a single character.
|
|
|
|
- `|` **the OR operator acts on tokens,** for example `abc|ebc` is not
|
|
`abc` OR `ebc`. Instead it is evaluated like `ab`, followed by `c OR e`,
|
|
followed by `bc`, because the **token is the base element**,
|
|
not the sequence of symbols.
|
|
Note: **Two char classes with an `OR` in the middle is a syntax error.**
|
|
|
|
- The **match operation stops at the end of the string**. It does *NOT* stop
|
|
at new line characters.
|
|
|
|
|
|
## Tokens
|
|
|
|
The tokens are the atomic units, used by this regex engine.
|
|
They can be one of the following:
|
|
|
|
|
|
### Simple char
|
|
|
|
This token is a simple single character like `a` or `b` etc.
|
|
|
|
|
|
### Match positional delimiters
|
|
|
|
`^` Matches the start of the string.
|
|
|
|
`$` Matches the end of the string.
|
|
|
|
|
|
### Char class (cc)
|
|
|
|
The character classes match all the chars specified inside. Use square
|
|
brackets `[ ]` to enclose them.
|
|
|
|
The sequence of the chars in the character class, is evaluated with an OR op.
|
|
|
|
For example, the cc `[abc]`, matches any character, that is `a` or `b` or `c`,
|
|
but it doesn't match `C` or `z`.
|
|
|
|
Inside a cc, it is possible to specify a "range" of characters, for example
|
|
`[ad-h]` is equivalent to writing `[adefgh]`.
|
|
|
|
A cc can have different ranges at the same time, for example `[a-zA-z0-9]`
|
|
matches all the latin lowercase, uppercase and numeric characters.
|
|
|
|
It is possible to negate the meaning of a cc, using the caret char at the
|
|
start of the cc like this: `[^abc]` . That matches every char that is NOT
|
|
`a` or `b` or `c`.
|
|
|
|
A cc can contain meta-chars like: `[a-z\d]`, that match all the lowercase
|
|
latin chars `a-z` and all the digits `\d`.
|
|
|
|
It is possible to mix all the properties of the char class together.
|
|
|
|
NB: In order to match the `-` (minus) char, it must be preceded by
|
|
a backslash in the cc, for example `[\-_\d\a]` will match:
|
|
`-` minus,
|
|
`_` underscore,
|
|
`\d` numeric chars,
|
|
`\a` lower case chars.
|
|
|
|
### Meta-chars
|
|
|
|
A meta-char is specified by a backslash, before a character.
|
|
For example `\w` is the meta-char `w`.
|
|
|
|
A meta-char can match different types of characters.
|
|
|
|
* `\w` matches a word char char `[a-zA-Z0-9_]`
|
|
* `\W` matches a non word char
|
|
* `\d` matches a digit `[0-9]`
|
|
* `\D` matches a non digit
|
|
* `\s` matches a space char, one of `[' ','\t','\n','\r','\v','\f']`
|
|
* `\S` matches a non space char
|
|
* `\a` matches only a lowercase char `[a-z]`
|
|
* `\A` matches only an uppercase char `[A-Z]`
|
|
|
|
### Quantifier
|
|
|
|
Each token can have a quantifier, that specifies how many times the character
|
|
must be matched.
|
|
|
|
#### **Short quantifiers**
|
|
|
|
- `?` matches 0 or 1 time, `a?b` matches both `ab` or `b`
|
|
- `+` matches *at least* 1 time, for example, `a+` matches both `aaa` or `a`
|
|
- `*` matches 0 or more times, for example, `a*b` matches `aaab`, `ab` or `b`
|
|
|
|
#### **Long quantifiers**
|
|
|
|
- `{x}` matches exactly x times, `a{2}` matches `aa`, but not `aaa` or `a`
|
|
- `{min,}` matches at least min times, `a{2,}` matches `aaa` or `aa`, not `a`
|
|
- `{,max}` matches at least 0 times and at maximum max times,
|
|
for example, `a{,2}` matches `a` and `aa`, but doesn't match `aaa`
|
|
- `{min,max}` matches from min times, to max times, for example
|
|
`a{2,3}` matches `aa` and `aaa`, but doesn't match `a` or `aaaa`
|
|
|
|
A long quantifier, may have a `greedy off` flag, that is the `?`
|
|
character after the brackets. `{2,4}?` means to match the minimum
|
|
number of possible tokens, in this case 2.
|
|
|
|
### Dot char
|
|
|
|
The dot is a particular meta-char, that matches "any char".
|
|
|
|
It is simpler to explain it with an example:
|
|
|
|
Suppose you have `abccc ddeef` as a source string, that you want to parse
|
|
with a regex. The following table show the query strings and the result of
|
|
parsing source string.
|
|
|
|
| query string | result |
|
|
|--------------|-------------|
|
|
| `.*c` | `abc` |
|
|
| `.*dd` | `abcc dd` |
|
|
| `ab.*e` | `abccc dde` |
|
|
| `ab.{3} .*e` | `abccc dde` |
|
|
The dot matches any character, until the next token match is satisfied.
|
|
|
|
**Important Note:** *Consecutive dots, for example `...`, are not allowed.*
|
|
*This will cause a syntax error. Use a quantifier instead.*
|
|
|
|
### OR token
|
|
|
|
The token `|`, means a logic OR operation between two consecutive tokens,
|
|
i.e. `a|b` matches a character that is `a` or `b`.
|
|
|
|
The OR token can work in a "chained way": `a|(b)|cd ` means test first `a`,
|
|
if the char is not `a`, then test the group `(b)`, and if the group doesn't
|
|
match too, finally test the token `c`.
|
|
|
|
NB: ** unlike in PCRE, the OR operation works at token level!**
|
|
It doesn't work at concatenation level!
|
|
NB2: **Two char classes with an `OR` in the middle is a syntax error.**
|
|
|
|
That also means, that a query string like `abc|bde` is not equal to
|
|
`(abc)|(bde)`, but instead to `ab(c|b)de.
|
|
The OR operation works only for `c|b`, not at char concatenation level.
|
|
|
|
### Groups
|
|
|
|
Groups are a method to create complex patterns with repetitions of blocks
|
|
of tokens. The groups are delimited by round brackets `( )`. Groups can be
|
|
nested. Like all other tokens, groups can have a quantifier too.
|
|
|
|
`c(pa)+z` match `cpapaz` or `cpaz` or `cpapapaz` .
|
|
|
|
`(c(pa)+z ?)+` matches `cpaz cpapaz cpapapaz` or `cpapaz`
|
|
|
|
Lets analyze this last case, first we have the group `#0`, that is the most
|
|
outer round brackets `(...)+`. This group has a quantifier `+`, that say to
|
|
match its content *at least one time*.
|
|
|
|
Then we have a simple char token `c`, and a second group `#1`: `(pa)+`.
|
|
This group also tries to match the sequence `pa`, *at least one time*,
|
|
as specified by the `+` quantifier.
|
|
|
|
Then, we have another simple token `z` and another simple token ` ?`,
|
|
i.e. the space char (ascii code 32) followed by the `?` quantifier,
|
|
which means that the preceding space should be matched 0 or 1 time.
|
|
|
|
This explains why the `(c(pa)+z ?)+` query string,
|
|
can match `cpaz cpapaz cpapapaz` .
|
|
|
|
In this implementation the groups are "capture groups". This means that the
|
|
last temporal result for each group, can be retrieved from the `RE` struct.
|
|
|
|
The "capture groups" are stored as indexes in the field `groups`,
|
|
that is an `[]int` inside the `RE` struct.
|
|
|
|
**example:**
|
|
|
|
```v oksyntax
|
|
text := 'cpaz cpapaz cpapapaz'
|
|
query := r'(c(pa)+z ?)+'
|
|
mut re := regex.regex_opt(query) or { panic(err) }
|
|
println(re.get_query())
|
|
// #0(c#1(pa)+z ?)+
|
|
// #0 and #1 are the ids of the groups, are shown if re.debug is 1 or 2
|
|
start, end := re.match_string(text)
|
|
// [start=0, end=20] match => [cpaz cpapaz cpapapaz]
|
|
mut gi := 0
|
|
for gi < re.groups.len {
|
|
if re.groups[gi] >= 0 {
|
|
println('${gi / 2} :[${text[re.groups[gi]..re.groups[gi + 1]]}]')
|
|
}
|
|
gi += 2
|
|
}
|
|
// groups captured
|
|
// 0 :[cpapapaz]
|
|
// 1 :[pa]
|
|
```
|
|
|
|
**note:** *to show the `group id number` in the result of the `get_query()`*
|
|
*the flag `debug` of the RE object must be `1` or `2`*
|
|
|
|
In order to simplify the use of the captured groups, it possible to use the
|
|
utility function: `get_group_list`.
|
|
|
|
This function return a list of groups using this support struct:
|
|
|
|
```v oksyntax
|
|
pub struct Re_group {
|
|
pub:
|
|
start int = -1
|
|
end int = -1
|
|
}
|
|
```
|
|
|
|
Here an example of use:
|
|
|
|
```v oksyntax
|
|
/*
|
|
This simple function converts an HTML RGB value with 3 or 6 hex digits to
|
|
an u32 value, this function is not optimized and it is only for didatical
|
|
purpose. Example: #A0B0CC #A9F
|
|
*/
|
|
fn convert_html_rgb(in_col string) u32 {
|
|
mut n_digit := if in_col.len == 4 { 1 } else { 2 }
|
|
mut col_mul := if in_col.len == 4 { 4 } else { 0 }
|
|
// this is the regex query, it use the V string interpolation to customize the regex query
|
|
// NOTE: if you want use escaped code you must use the r"" (raw) strings,
|
|
// *** please remember that the V interpoaltion doesn't work on raw strings. ***
|
|
query := '#([a-fA-F0-9]{$n_digit})([a-fA-F0-9]{$n_digit})([a-fA-F0-9]{$n_digit})'
|
|
mut re := regex.regex_opt(query) or { panic(err) }
|
|
start, end := re.match_string(in_col)
|
|
println('start: $start, end: $end')
|
|
mut res := u32(0)
|
|
if start >= 0 {
|
|
group_list := re.get_group_list() // this is the utility function
|
|
r := ('0x' + in_col[group_list[0].start..group_list[0].end]).int() << col_mul
|
|
g := ('0x' + in_col[group_list[1].start..group_list[1].end]).int() << col_mul
|
|
b := ('0x' + in_col[group_list[2].start..group_list[2].end]).int() << col_mul
|
|
println('r: $r g: $g b: $b')
|
|
res = u32(r) << 16 | u32(g) << 8 | u32(b)
|
|
}
|
|
return res
|
|
}
|
|
```
|
|
|
|
Others utility functions are `get_group_by_id` and `get_group_bounds_by_id`
|
|
that get directly the string of a group using its `id`:
|
|
|
|
```v ignore
|
|
txt := "my used string...."
|
|
for g_index := 0; g_index < re.group_count ; g_index++ {
|
|
println("#${g_index} [${re.get_group_by_id(txt, g_index)}] \
|
|
bounds: ${re.get_group_bounds_by_id(g_index)}")
|
|
}
|
|
```
|
|
|
|
More helper functions are listed in the **Groups query functions** section.
|
|
|
|
### Groups Continuous saving
|
|
|
|
In particular situations, it is useful to have a continuous group saving.
|
|
This is possible by initializing the `group_csave` field in the `RE` struct.
|
|
|
|
This feature allows you to collect data in a continuous/streaming way.
|
|
|
|
In the example, we can pass a text, followed by an integer list,
|
|
that we wish to collect. To achieve this task, we can use the continuous
|
|
group saving, by enabling the right flag: `re.group_csave_flag = true`.
|
|
|
|
The `.group_csave` array will be filled then, following this logic:
|
|
|
|
`re.group_csave[0]` - number of total saved records
|
|
`re.group_csave[1+n*3]` - id of the saved group
|
|
`re.group_csave[1+n*3]` - start index in the source string of the saved group
|
|
`re.group_csave[1+n*3]` - end index in the source string of the saved group
|
|
|
|
The regex will save groups, until it finishes, or finds that the array has no
|
|
more space. If the space ends, no error is raised, and further records will
|
|
not be saved.
|
|
|
|
```v ignore
|
|
import regex
|
|
fn main(){
|
|
txt := "http://www.ciao.mondo/hello/pippo12_/pera.html"
|
|
query := r"(?P<format>https?)|(?P<format>ftps?)://(?P<token>[\w_]+.)+"
|
|
|
|
mut re := regex.regex_opt(query) or { panic(err) }
|
|
//println(re.get_code()) // uncomment to see the print of the regex execution code
|
|
re.debug=2 // enable maximum log
|
|
println("String: ${txt}")
|
|
println("Query : ${re.get_query()}")
|
|
re.debug=0 // disable log
|
|
re.group_csave_flag = true
|
|
start, end := re.match_string(txt)
|
|
if start >= 0 {
|
|
println("Match ($start, $end) => [${txt[start..end]}]")
|
|
} else {
|
|
println("No Match")
|
|
}
|
|
|
|
if re.group_csave_flag == true && start >= 0 && re.group_csave.len > 0{
|
|
println("cg: $re.group_csave")
|
|
mut cs_i := 1
|
|
for cs_i < re.group_csave[0]*3 {
|
|
g_id := re.group_csave[cs_i]
|
|
st := re.group_csave[cs_i+1]
|
|
en := re.group_csave[cs_i+2]
|
|
println("cg[$g_id] $st $en:[${txt[st..en]}]")
|
|
cs_i += 3
|
|
}
|
|
}
|
|
}
|
|
```
|
|
|
|
The output will be:
|
|
|
|
```
|
|
String: http://www.ciao.mondo/hello/pippo12_/pera.html
|
|
Query : #0(?P<format>https?)|{8,14}#0(?P<format>ftps?)://#1(?P<token>[\w_]+.)+
|
|
Match (0, 46) => [http://www.ciao.mondo/hello/pippo12_/pera.html]
|
|
cg: [8, 0, 0, 4, 1, 7, 11, 1, 11, 16, 1, 16, 22, 1, 22, 28, 1, 28, 37, 1, 37, 42, 1, 42, 46]
|
|
cg[0] 0 4:[http]
|
|
cg[1] 7 11:[www.]
|
|
cg[1] 11 16:[ciao.]
|
|
cg[1] 16 22:[mondo/]
|
|
cg[1] 22 28:[hello/]
|
|
cg[1] 28 37:[pippo12_/]
|
|
cg[1] 37 42:[pera.]
|
|
cg[1] 42 46:[html]
|
|
```
|
|
|
|
### Named capturing groups
|
|
|
|
This regex module supports partially the question mark `?` PCRE syntax for groups.
|
|
|
|
`(?:abcd)` **non capturing group**: the content of the group will not be saved.
|
|
|
|
`(?P<mygroup>abcdef)` **named group:** the group content is saved and labeled
|
|
as `mygroup`.
|
|
|
|
The label of the groups is saved in the `group_map` of the `RE` struct,
|
|
that is a map from `string` to `int`, where the value is the index in
|
|
`group_csave` list of indexes.
|
|
|
|
Here is an example for how to use them:
|
|
```v ignore
|
|
import regex
|
|
fn main(){
|
|
txt := "http://www.ciao.mondo/hello/pippo12_/pera.html"
|
|
query := r"(?P<format>https?)|(?P<format>ftps?)://(?P<token>[\w_]+.)+"
|
|
|
|
mut re := regex.regex_opt(query) or { panic(err) }
|
|
//println(re.get_code()) // uncomment to see the print of the regex execution code
|
|
re.debug=2 // enable maximum log
|
|
println("String: ${txt}")
|
|
println("Query : ${re.get_query()}")
|
|
re.debug=0 // disable log
|
|
start, end := re.match_string(txt)
|
|
if start >= 0 {
|
|
println("Match ($start, $end) => [${txt[start..end]}]")
|
|
} else {
|
|
println("No Match")
|
|
}
|
|
|
|
for name in re.group_map.keys() {
|
|
println("group:'$name' \t=> [${re.get_group_by_name(txt, name)}] \
|
|
bounds: ${re.get_group_bounds_by_name(name)}")
|
|
}
|
|
}
|
|
```
|
|
|
|
Output:
|
|
|
|
```
|
|
String: http://www.ciao.mondo/hello/pippo12_/pera.html
|
|
Query : #0(?P<format>https?)|{8,14}#0(?P<format>ftps?)://#1(?P<token>[\w_]+.)+
|
|
Match (0, 46) => [http://www.ciao.mondo/hello/pippo12_/pera.html]
|
|
group:'format' => [http] bounds: (0, 4)
|
|
group:'token' => [html] bounds: (42, 46)
|
|
```
|
|
|
|
In order to simplify the use of the named groups, it is possible to
|
|
use a name map in the `re` struct, using the function `re.get_group_by_name`.
|
|
|
|
Here is a more complex example of using them:
|
|
```v oksyntax
|
|
// This function demostrate the use of the named groups
|
|
fn convert_html_rgb_n(in_col string) u32 {
|
|
mut n_digit := if in_col.len == 4 { 1 } else { 2 }
|
|
mut col_mul := if in_col.len == 4 { 4 } else { 0 }
|
|
query := '#(?P<red>[a-fA-F0-9]{$n_digit})' + '(?P<green>[a-fA-F0-9]{$n_digit})' +
|
|
'(?P<blue>[a-fA-F0-9]{$n_digit})'
|
|
mut re := regex.regex_opt(query) or { panic(err) }
|
|
start, end := re.match_string(in_col)
|
|
println('start: $start, end: $end')
|
|
mut res := u32(0)
|
|
if start >= 0 {
|
|
red_s, red_e := re.get_group_by_name('red')
|
|
r := ('0x' + in_col[red_s..red_e]).int() << col_mul
|
|
green_s, green_e := re.get_group_by_name('green')
|
|
g := ('0x' + in_col[green_s..green_e]).int() << col_mul
|
|
blue_s, blue_e := re.get_group_by_name('blue')
|
|
b := ('0x' + in_col[blue_s..blue_e]).int() << col_mul
|
|
println('r: $r g: $g b: $b')
|
|
res = u32(r) << 16 | u32(g) << 8 | u32(b)
|
|
}
|
|
return res
|
|
}
|
|
```
|
|
|
|
Other utilities are `get_group_by_name` and `get_group_bounds_by_name`,
|
|
that return the string of a group using its `name`:
|
|
|
|
```v ignore
|
|
txt := "my used string...."
|
|
for name in re.group_map.keys() {
|
|
println("group:'$name' \t=> [${re.get_group_by_name(txt, name)}] \
|
|
bounds: ${re.get_group_bounds_by_name(name)}")
|
|
}
|
|
```
|
|
|
|
|
|
|
|
### Groups query functions
|
|
|
|
These functions are helpers to query the captured groups
|
|
|
|
```v ignore
|
|
// get_group_bounds_by_name get a group boundaries by its name
|
|
pub fn (re RE) get_group_bounds_by_name(group_name string) (int, int)
|
|
|
|
// get_group_by_name get a group string by its name
|
|
pub fn (re RE) get_group_by_name(group_name string) string
|
|
|
|
// get_group_by_id get a group boundaries by its id
|
|
pub fn (re RE) get_group_bounds_by_id(group_id int) (int,int)
|
|
|
|
// get_group_by_id get a group string by its id
|
|
pub fn (re RE) get_group_by_id(in_txt string, group_id int) string
|
|
|
|
struct Re_group {
|
|
pub:
|
|
start int = -1
|
|
end int = -1
|
|
}
|
|
|
|
// get_group_list return a list of Re_group for the found groups
|
|
pub fn (re RE) get_group_list() []Re_group
|
|
```
|
|
|
|
## Flags
|
|
|
|
It is possible to set some flags in the regex parser, that change
|
|
the behavior of the parser itself.
|
|
|
|
```v ignore
|
|
// example of flag settings
|
|
mut re := regex.new()
|
|
re.flag = regex.f_bin
|
|
```
|
|
|
|
- `f_bin`: parse a string as bytes, utf-8 management disabled.
|
|
|
|
- `f_efm`: exit on the first char matches in the query, used by the
|
|
find function.
|
|
|
|
- `f_ms`: matches only if the index of the start match is 0,
|
|
same as `^` at the start of the query string.
|
|
|
|
- `f_me`: matches only if the end index of the match is the last char
|
|
of the input string, same as `$` end of query string.
|
|
|
|
- `f_nl`: stop the matching if found a new line char `\n` or `\r`
|
|
|
|
## Functions
|
|
|
|
### Initializer
|
|
|
|
These functions are helper that create the `RE` struct,
|
|
a `RE` struct can be created manually if you needed.
|
|
|
|
#### **Simplified initializer**
|
|
|
|
```v ignore
|
|
// regex create a regex object from the query string and compile it
|
|
pub fn regex_opt(in_query string) ?RE
|
|
```
|
|
|
|
#### **Base initializer**
|
|
|
|
```v ignore
|
|
// new_regex create a REgex of small size, usually sufficient for ordinary use
|
|
pub fn new() RE
|
|
|
|
```
|
|
#### **Custom initialization**
|
|
For some particular needs, it is possible to initialize a fully customized regex:
|
|
```v ignore
|
|
pattern = r"ab(.*)(ac)"
|
|
// init custom regex
|
|
mut re := regex.RE{}
|
|
// max program length, can not be longer then the pattern
|
|
re.prog = []Token {len: pattern.len + 1}
|
|
// can not be more char class the the length of the pattern
|
|
re.cc = []CharClass{len: pattern.len}
|
|
|
|
re.group_csave_flag = false // true enable continuos group saving if needed
|
|
re.group_max_nested = 128 // set max 128 group nested possible
|
|
re.group_max = pattern.len>>1 // we can't have more groups than the half of the pattern legth
|
|
re.group_stack = []int{len: re.group_max, init: -1}
|
|
re.group_data = []int{len: re.group_max, init: -1}
|
|
```
|
|
### Compiling
|
|
|
|
After an initializer is used, the regex expression must be compiled with:
|
|
|
|
```v ignore
|
|
// compile compiles the REgex returning an error if the compilation fails
|
|
pub fn (re mut RE) compile_opt(in_txt string) ?
|
|
```
|
|
|
|
### Matching Functions
|
|
|
|
These are the matching functions
|
|
|
|
```v ignore
|
|
// match_string try to match the input string, return start and end index if found else start is -1
|
|
pub fn (re mut RE) match_string(in_txt string) (int,int)
|
|
|
|
```
|
|
|
|
## Find and Replace
|
|
|
|
There are the following find and replace functions:
|
|
|
|
#### Find functions
|
|
|
|
```v ignore
|
|
// find try to find the first match in the input string
|
|
// return start and end index if found else start is -1
|
|
pub fn (re mut RE) find(in_txt string) (int,int)
|
|
|
|
// find_all find all the "non overlapping" occurrences of the matching pattern
|
|
// return a list of start end indexes like: [3,4,6,8]
|
|
// the matches are [3,4] and [6,8]
|
|
pub fn (re mut RE) find_all(in_txt string) []int
|
|
|
|
// find_all find all the "non overlapping" occurrences of the matching pattern
|
|
// return a list of strings
|
|
// the result is like ["first match","secon match"]
|
|
pub fn (mut re RE) find_all_str(in_txt string) []string
|
|
```
|
|
|
|
#### Replace functions
|
|
|
|
```v ignore
|
|
// replace return a string where the matches are replaced with the repl_str string,
|
|
// this function support groups in the replace string
|
|
pub fn (re mut RE) replace(in_txt string, repl string) string
|
|
```
|
|
|
|
replace string can include groups references:
|
|
|
|
```v ignore
|
|
txt := "Today it is a good day."
|
|
query := r'(a\w)[ ,.]'
|
|
mut re := regex.regex_opt(query)?
|
|
res := re.replace(txt, r"__[\0]__")
|
|
```
|
|
|
|
in this example we used the group `0` in the replace string: `\0`, the result will be:
|
|
|
|
```
|
|
Today it is a good day. => Tod__[ay]__it is a good d__[ay]__
|
|
```
|
|
|
|
**Note:** in the replace strings can be used only groups from `0` to `9`.
|
|
|
|
If the usage of `groups` in the replace process, is not needed, it is possible
|
|
to use a quick function:
|
|
|
|
```v ignore
|
|
// replace_simple return a string where the matches are replaced with the replace string
|
|
pub fn (mut re RE) replace_simple(in_txt string, repl string) string
|
|
```
|
|
|
|
If it is needed to replace N instances of the found strings it is possible to use:
|
|
```v ignore
|
|
// replace_n return a string where the firts `count` matches are replaced with the repl_str string
|
|
// `count` indicate the number of max replacements that will be done.
|
|
// if count is > 0 the replace began from the start of the string toward the end
|
|
// if count is < 0 the replace began from the end of the string toward the start
|
|
// if count is 0 do nothing
|
|
pub fn (mut re RE) replace_n(in_txt string, repl_str string, count int) string
|
|
```
|
|
|
|
#### Custom replace function
|
|
|
|
For complex find and replace operations, you can use `replace_by_fn` .
|
|
The `replace_by_fn`, uses a custom replace callback function, thus
|
|
allowing customizations. The custom callback function is called for
|
|
every non overlapped find.
|
|
|
|
The custom callback function must be of the type:
|
|
|
|
```v ignore
|
|
// type of function used for custom replace
|
|
// in_txt source text
|
|
// start index of the start of the match in in_txt
|
|
// end index of the end of the match in in_txt
|
|
// --- the match is in in_txt[start..end] ---
|
|
fn (re RE, in_txt string, start int, end int) string
|
|
```
|
|
|
|
The following example will clarify its usage:
|
|
|
|
```v ignore
|
|
import regex
|
|
// customized replace functions
|
|
// it will be called on each non overlapped find
|
|
fn my_repl(re regex.RE, in_txt string, start int, end int) string {
|
|
g0 := re.get_group_by_id(in_txt, 0)
|
|
g1 := re.get_group_by_id(in_txt, 1)
|
|
g2 := re.get_group_by_id(in_txt, 2)
|
|
return "*$g0*$g1*$g2*"
|
|
}
|
|
|
|
fn main(){
|
|
txt := "today [John] is gone to his house with (Jack) and [Marie]."
|
|
query := r"(.)(\A\w+)(.)"
|
|
|
|
mut re := regex.regex_opt(query) or { panic(err) }
|
|
|
|
result := re.replace_by_fn(txt, my_repl)
|
|
println(result)
|
|
}
|
|
```
|
|
|
|
Output:
|
|
|
|
```
|
|
today *[*John*]* is gone to his house with *(*Jack*)* and *[*Marie*]*.
|
|
```
|
|
|
|
|
|
|
|
## Debugging
|
|
|
|
This module has few small utilities to you write regex patterns.
|
|
|
|
### **Syntax errors highlight**
|
|
|
|
The next example code shows how to visualize regex pattern syntax errors
|
|
in the compilation phase:
|
|
|
|
```v oksyntax
|
|
query := r'ciao da ab[ab-]'
|
|
// there is an error, a range not closed!!
|
|
mut re := new()
|
|
re.compile_opt(query) or { println(err) }
|
|
// output!!
|
|
// query: ciao da ab[ab-]
|
|
// err : ----------^
|
|
// ERROR: ERR_SYNTAX_ERROR
|
|
```
|
|
|
|
### **Compiled code**
|
|
|
|
It is possible to view the compiled code calling the function `get_query()`.
|
|
The result will be something like this:
|
|
|
|
```
|
|
========================================
|
|
v RegEx compiler v 1.0 alpha output:
|
|
PC: 0 ist: 92000000 ( GROUP_START #:0 { 1, 1}
|
|
PC: 1 ist: 98000000 . DOT_CHAR nx chk: 4 { 1, 1}
|
|
PC: 2 ist: 94000000 ) GROUP_END #:0 { 1, 1}
|
|
PC: 3 ist: 92000000 ( GROUP_START #:1 { 1, 1}
|
|
PC: 4 ist: 90000000 [\A] BSLS { 1, 1}
|
|
PC: 5 ist: 90000000 [\w] BSLS { 1,MAX}
|
|
PC: 6 ist: 94000000 ) GROUP_END #:1 { 1, 1}
|
|
PC: 7 ist: 92000000 ( GROUP_START #:2 { 1, 1}
|
|
PC: 8 ist: 98000000 . DOT_CHAR nx chk: -1 last! { 1, 1}
|
|
PC: 9 ist: 94000000 ) GROUP_END #:2 { 1, 1}
|
|
PC: 10 ist: 88000000 PROG_END { 0, 0}
|
|
========================================
|
|
|
|
```
|
|
|
|
`PC`:`int` is the program counter or step of execution, each single step is a token.
|
|
|
|
`ist`:`hex` is the token instruction id.
|
|
|
|
`[a]` is the char used by the token.
|
|
|
|
`query_ch` is the type of token.
|
|
|
|
`{m,n}` is the quantifier, the greedy off flag `?` will be showed if present in the token
|
|
|
|
### **Log debug**
|
|
|
|
The log debugger allow to print the status of the regex parser when the
|
|
parser is running. It is possible to have two different levels of
|
|
debug information: 1 is normal, while 2 is verbose.
|
|
|
|
Here is an example:
|
|
|
|
*normal* - list only the token instruction with their values
|
|
|
|
```ignore
|
|
// re.flag = 1 // log level normal
|
|
flags: 00000000
|
|
# 2 s: ist_load PC: i,ch,len:[ 0,'a',1] f.m:[ -1, -1] query_ch: [a]{1,1}:0 (#-1)
|
|
# 5 s: ist_load PC: i,ch,len:[ 1,'b',1] f.m:[ 0, 0] query_ch: [b]{2,3}:0? (#-1)
|
|
# 7 s: ist_load PC: i,ch,len:[ 2,'b',1] f.m:[ 0, 1] query_ch: [b]{2,3}:1? (#-1)
|
|
# 10 PROG_END
|
|
```
|
|
|
|
*verbose* - list all the instructions and states of the parser
|
|
|
|
```ignore
|
|
flags: 00000000
|
|
# 0 s: start PC: NA
|
|
# 1 s: ist_next PC: NA
|
|
# 2 s: ist_load PC: i,ch,len:[ 0,'a',1] f.m:[ -1, -1] query_ch: [a]{1,1}:0 (#-1)
|
|
# 3 s: ist_quant_p PC: i,ch,len:[ 1,'b',1] f.m:[ 0, 0] query_ch: [a]{1,1}:1 (#-1)
|
|
# 4 s: ist_next PC: NA
|
|
# 5 s: ist_load PC: i,ch,len:[ 1,'b',1] f.m:[ 0, 0] query_ch: [b]{2,3}:0? (#-1)
|
|
# 6 s: ist_quant_p PC: i,ch,len:[ 2,'b',1] f.m:[ 0, 1] query_ch: [b]{2,3}:1? (#-1)
|
|
# 7 s: ist_load PC: i,ch,len:[ 2,'b',1] f.m:[ 0, 1] query_ch: [b]{2,3}:1? (#-1)
|
|
# 8 s: ist_quant_p PC: i,ch,len:[ 3,'b',1] f.m:[ 0, 2] query_ch: [b]{2,3}:2? (#-1)
|
|
# 9 s: ist_next PC: NA
|
|
# 10 PROG_END
|
|
# 11 PROG_END
|
|
```
|
|
|
|
the columns have the following meaning:
|
|
|
|
`# 2` number of actual steps from the start of parsing
|
|
|
|
`s: ist_next` state of the present step
|
|
|
|
`PC: 1` program counter of the step
|
|
|
|
`=>7fffffff ` hex code of the instruction
|
|
|
|
`i,ch,len:[ 0,'a',1]` `i` index in the source string, `ch` the char parsed,
|
|
`len` the length in byte of the char parsed
|
|
|
|
`f.m:[ 0, 1]` `f` index of the first match in the source string, `m` index that is actual matching
|
|
|
|
`query_ch: [b]` token in use and its char
|
|
|
|
`{2,3}:1?` quantifier `{min,max}`, `:1` is the actual counter of repetition,
|
|
`?` is the greedy off flag if present.
|
|
|
|
### **Custom Logger output**
|
|
|
|
The debug functions output uses the `stdout` as default,
|
|
it is possible to provide an alternative output, by setting a custom
|
|
output function:
|
|
|
|
```v oksyntax
|
|
// custom print function, the input will be the regex debug string
|
|
fn custom_print(txt string) {
|
|
println('my log: $txt')
|
|
}
|
|
|
|
mut re := new()
|
|
re.log_func = custom_print
|
|
// every debug output from now will call this function
|
|
```
|
|
|
|
## Example code
|
|
|
|
Here an example that perform some basically match of strings
|
|
|
|
```v ignore
|
|
import regex
|
|
|
|
fn main(){
|
|
txt := "http://www.ciao.mondo/hello/pippo12_/pera.html"
|
|
query := r"(?P<format>https?)|(?P<format>ftps?)://(?P<token>[\w_]+.)+"
|
|
|
|
mut re := regex.regex_opt(query) or { panic(err) }
|
|
|
|
start, end := re.match_string(txt)
|
|
if start >= 0 {
|
|
println("Match ($start, $end) => [${txt[start..end]}]")
|
|
for g_index := 0; g_index < re.group_count ; g_index++ {
|
|
println("#${g_index} [${re.get_group_by_id(txt, g_index)}] \
|
|
bounds: ${re.get_group_bounds_by_id(g_index)}")
|
|
}
|
|
for name in re.group_map.keys() {
|
|
println("group:'$name' \t=> [${re.get_group_by_name(txt, name)}] \
|
|
bounds: ${re.get_group_bounds_by_name(name)}")
|
|
}
|
|
} else {
|
|
println("No Match")
|
|
}
|
|
}
|
|
```
|
|
Here an example of total customization of the regex environment creation:
|
|
```v ignore
|
|
import regex
|
|
|
|
fn main(){
|
|
txt := "today John is gone to his house with Jack and Marie."
|
|
query := r"(?:(?P<word>\A\w+)|(?:\a\w+)[\s.]?)+"
|
|
|
|
// init regex
|
|
mut re := regex.RE{}
|
|
// max program length, can not be longer then the query
|
|
re.prog = []regex.Token {len: query.len + 1}
|
|
// can not be more char class the the length of the query
|
|
re.cc = []regex.CharClass{len: query.len}
|
|
re.prog = []regex.Token {len: query.len+1}
|
|
// enable continuos group saving
|
|
re.group_csave_flag = true
|
|
// set max 128 group nested
|
|
re.group_max_nested = 128
|
|
// we can't have more groups than the half of the query legth
|
|
re.group_max = query.len>>1
|
|
|
|
// compile the query
|
|
re.compile_opt(query) or { panic(err) }
|
|
|
|
start, end := re.match_string(txt)
|
|
if start >= 0 {
|
|
println("Match ($start, $end) => [${txt[start..end]}]")
|
|
} else {
|
|
println("No Match")
|
|
}
|
|
|
|
// show results for continuos group saving
|
|
if re.group_csave_flag == true && start >= 0 && re.group_csave.len > 0{
|
|
println("cg: $re.group_csave")
|
|
mut cs_i := 1
|
|
for cs_i < re.group_csave[0]*3 {
|
|
g_id := re.group_csave[cs_i]
|
|
st := re.group_csave[cs_i+1]
|
|
en := re.group_csave[cs_i+2]
|
|
println("cg[$g_id] $st $en:[${txt[st..en]}]")
|
|
cs_i += 3
|
|
}
|
|
}
|
|
|
|
// show results for captured groups
|
|
if start >= 0 {
|
|
println("Match ($start, $end) => [${txt[start..end]}]")
|
|
for g_index := 0; g_index < re.group_count ; g_index++ {
|
|
println("#${g_index} [${re.get_group_by_id(txt, g_index)}] \
|
|
bounds: ${re.get_group_bounds_by_id(g_index)}")
|
|
}
|
|
for name in re.group_map.keys() {
|
|
println("group:'$name' \t=> [${re.get_group_by_name(txt, name)}] \
|
|
bounds: ${re.get_group_bounds_by_name(name)}")
|
|
}
|
|
} else {
|
|
println("No Match")
|
|
}
|
|
}
|
|
```
|
|
|
|
More examples are available in the test code for the `regex` module,
|
|
see `vlib/regex/regex_test.v`.
|