614 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			Markdown
		
	
	
			
		
		
	
	
			614 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			Markdown
		
	
	
# V RegEx (Regular expression) 0.9g
 | 
						|
 | 
						|
[TOC]
 | 
						|
 | 
						|
## introduction
 | 
						|
 | 
						|
Write here the introduction... not today!! -_-
 | 
						|
 | 
						|
## Basic assumption
 | 
						|
 | 
						|
In this release, during the writing of the code some assumptions are made
 | 
						|
and are valid for all the features.
 | 
						|
 | 
						|
1. The matching stops at the end of the string not at the newline chars.
 | 
						|
2. The basic elements of this regex engine are the tokens,
 | 
						|
    in a query string a simple char is a token. The token is the atomic unit of this regex engine.
 | 
						|
 | 
						|
## Match positional limiter
 | 
						|
 | 
						|
The module supports the following features:
 | 
						|
 | 
						|
- `$` `^` delimiter
 | 
						|
 | 
						|
`^` (Caret.) Matches at the start of the string
 | 
						|
 | 
						|
`$` Matches at the end of the string
 | 
						|
 | 
						|
## Tokens
 | 
						|
 | 
						|
The tokens are the atomic units used by this regex engine and can be ones of the following:
 | 
						|
 | 
						|
### Simple char
 | 
						|
 | 
						|
this token is a simple single character like `a`.
 | 
						|
 | 
						|
### Char class (cc)
 | 
						|
 | 
						|
The cc matches all the chars specified inside, it is delimited by square brackets `[ ]`
 | 
						|
 | 
						|
the sequence of chars in the class is evaluated with an OR operation.
 | 
						|
 | 
						|
For example, the following cc `[abc]` matches any char that is `a` or `b` or `c`
 | 
						|
but doesn't match `C` or `z`.
 | 
						|
 | 
						|
Inside a cc is possible to specify a "range" of chars,
 | 
						|
for example `[ad-f]` is equivalent to write `[adef]`.
 | 
						|
 | 
						|
A cc can have different ranges at the same time like `[a-zA-z0-9]` that matches all the lowercase,
 | 
						|
uppercase and numeric chars.
 | 
						|
 | 
						|
It is possible negate the cc using the caret char at the start of the cc like: `[^abc]`
 | 
						|
that matches every char that is not `a` or `b` or `c`.
 | 
						|
 | 
						|
A cc can contain meta-chars like: `[a-z\d]` that matches all the lowercase latin chars `a-z`
 | 
						|
and all the digits `\d`.
 | 
						|
 | 
						|
It is possible to mix all the properties of the char class together.
 | 
						|
 | 
						|
**Note:** In order to match the `-` (minus) char, it must be located at the first position
 | 
						|
 in the cc, for example `[-_\d\a]` will match `-` minus, `_`underscore, `\d` numeric chars,
 | 
						|
 `\a` lower case chars.
 | 
						|
 | 
						|
### Meta-chars
 | 
						|
 | 
						|
A meta-char is specified by a backslash before a char like `\w` in this case the meta-char is `w`.
 | 
						|
 | 
						|
A meta-char can match different type of chars.
 | 
						|
 | 
						|
* `\w` matches an alphanumeric char `[a-zA-Z0-9_]`
 | 
						|
* `\W` matches a non alphanumeric char
 | 
						|
* `\d` matches a digit `[0-9]`
 | 
						|
* `\D` matches a non digit
 | 
						|
* `\s`matches a space char, one of `[' ','\t','\n','\r','\v','\f']`
 | 
						|
* `\S` matches a non space char
 | 
						|
* `\a` matches only a lowercase char `[a-z]`
 | 
						|
* `\A` matches only an uppercase char `[A-Z]`
 | 
						|
 | 
						|
### Quantifier
 | 
						|
 | 
						|
Each token can have a quantifier that specify how many times the char can or must be matched.
 | 
						|
 | 
						|
#### **Short quantifier**
 | 
						|
 | 
						|
- `?` matches 0 or 1 time, `a?b` matches both `ab` or `b`
 | 
						|
- `+` matches at minimum 1 time, `a+` matches both `aaa` or `a`
 | 
						|
- `*` matches 0 or more time, `a*b` matches both `aaab` or `ab` or `b`
 | 
						|
 | 
						|
#### **Long quantifier**
 | 
						|
 | 
						|
- `{x}` matches exactly x time, `a{2}` matches `aa` but doesn't match `aaa` or `a`
 | 
						|
- `{min,}` matches at minimum min time, `a{2,}` matches `aaa` or `aa` but doesn't match `a`
 | 
						|
- `{,max}` matches at least 0 time and maximum max time,
 | 
						|
    `a{,2}` matches `a` and `aa` but doesn't match `aaa`
 | 
						|
- `{min,max}` matches from min times to max times,
 | 
						|
    `a{2,3}` matches `aa` and `aaa` but doesn't match `a` or `aaaa`
 | 
						|
 | 
						|
a long quantifier may have a `greedy off` flag that is the `?` char after the brackets,
 | 
						|
`{2,4}?` means to match the minimum number possible tokens in this case 2.
 | 
						|
 | 
						|
### dot char
 | 
						|
 | 
						|
the dot is a particular meta char that matches  "any char",
 | 
						|
is more simple explain it with an example:
 | 
						|
 | 
						|
suppose to have `abccc ddeef` as source string to parse with regex,
 | 
						|
the following table show the query strings and the result of parsing source string.
 | 
						|
 | 
						|
| query string | result |
 | 
						|
| ------------ | ------ |
 | 
						|
| `.*c`        | `abc`  |
 | 
						|
|  `.*dd`		 |  `abcc dd` |
 | 
						|
| `ab.*e` | `abccc dde` |
 | 
						|
| `ab.{3} .*e` | `abccc dde` |
 | 
						|
 | 
						|
the dot char matches any char until the next token match is satisfied.
 | 
						|
 | 
						|
### OR token
 | 
						|
 | 
						|
the token `|` is a logic OR operation between two consecutive tokens,
 | 
						|
`a|b` matches a char that is `a` or `b`.
 | 
						|
 | 
						|
The OR token can work in a "chained way": `a|(b)|cd ` test first `a` if the char is not `a`
 | 
						|
then test the group `(b)` and if the group doesn't match test the token `c`.
 | 
						|
 | 
						|
**note: The OR work at token level! It doesn't work at concatenation level!**
 | 
						|
 | 
						|
A query string like `abc|bde` is not equal to `(abc)|(bde)`!!
 | 
						|
The OR work only on `c|b` not at char concatenation level.
 | 
						|
 | 
						|
### Groups
 | 
						|
 | 
						|
Groups are a method to create complex patterns with repetition of blocks of tokens.
 | 
						|
 | 
						|
The groups are delimited by round brackets `( )`,
 | 
						|
groups can be nested and can have a quantifier as all the tokens.
 | 
						|
 | 
						|
`c(pa)+z` match `cpapaz` or `cpaz` or `cpapapaz` .
 | 
						|
 | 
						|
`(c(pa)+z ?)+` matches `cpaz cpapaz cpapapaz` or `cpapaz`
 | 
						|
 | 
						|
let analyze this last case, first we have the group `#0`
 | 
						|
that are the most outer round brackets `(...)+`,
 | 
						|
this group has a quantifier that say to match its content at least one time `+`.
 | 
						|
 | 
						|
After we have a simple char token `c` and a second group that is the number `#1` :`(pa)+`,
 | 
						|
this group try to match the sequence `pa` at least one time as specified by the `+` quantifier.
 | 
						|
 | 
						|
After, we have another simple token `z` and another simple token ` ?`
 | 
						|
that is the space char (ascii code 32) followed by the `?` quantifier
 | 
						|
that say to capture the space char 0 or 1 time.
 | 
						|
 | 
						|
This explain because the `(c(pa)+z ?)+` query string can match `cpaz cpapaz cpapapaz` .
 | 
						|
 | 
						|
In this implementation the groups are "capture groups",
 | 
						|
it means that the last temporal result for each group can be retrieved from the `RE` struct.
 | 
						|
 | 
						|
The "capture groups" are store as couple of index in the field `groups`
 | 
						|
that is an `[]int` inside the `RE` struct.
 | 
						|
 | 
						|
**example:**
 | 
						|
 | 
						|
```v oksyntax
 | 
						|
text := "cpaz cpapaz cpapapaz"
 | 
						|
query:= r"(c(pa)+z ?)+"
 | 
						|
mut re := regex.regex_opt(query) or { panic(err) }
 | 
						|
 | 
						|
println(re.get_query())
 | 
						|
// #0(c#1(pa)+z ?)+  // #0 and #1 are the ids of the groups, are shown if re.debug is 1 or 2
 | 
						|
 | 
						|
start, end := re.match_string(text)
 | 
						|
// [start=0, end=20]  match => [cpaz cpapaz cpapapaz]
 | 
						|
 | 
						|
mut gi := 0
 | 
						|
for gi < re.groups.len {
 | 
						|
	if re.groups[gi] >= 0 {
 | 
						|
		println("${gi/2} :[${text[re.groups[gi]..re.groups[gi+1]]}]")
 | 
						|
	}
 | 
						|
	gi += 2
 | 
						|
}
 | 
						|
// groups captured
 | 
						|
// 0 :[cpapapaz]
 | 
						|
// 1 :[pa]
 | 
						|
```
 | 
						|
 | 
						|
**note:** *to show the `group id number` in the result of the `get_query()`*
 | 
						|
*the flag `debug` of the RE object must be `1` or `2`*
 | 
						|
 | 
						|
### Groups Continuous saving
 | 
						|
 | 
						|
In particular situations it is useful have a continuous save of the groups,
 | 
						|
this is possible initializing the saving array field in `RE` struct: `group_csave`.
 | 
						|
 | 
						|
This feature allow to collect data in a  continuous way.
 | 
						|
 | 
						|
In the example we pass a text followed by a integer list that we want collect.
 | 
						|
To achieve this task we can use the continuous saving of the group
 | 
						|
that save each captured group in a array that we set with: `re.group_csave = [-1].repeat(3*20+1)`.
 | 
						|
 | 
						|
The array will be filled with the following logic:
 | 
						|
 | 
						|
`re.group_csave[0]` number of total saved records
 | 
						|
 | 
						|
`re.group_csave[1+n*3]` id of the saved group
 | 
						|
`re.group_csave[1+n*3]` start index in the source string of the saved group
 | 
						|
`re.group_csave[1+n*3]` end index in the source string of the saved group
 | 
						|
 | 
						|
The regex save until finish or found that the array have no space.
 | 
						|
If the space ends no error is raised, further records will not be saved.
 | 
						|
 | 
						|
```v oksyntax
 | 
						|
fn example2() {
 | 
						|
	test_regex()
 | 
						|
 | 
						|
	text := "tst: 01,23,45 ,56, 78"
 | 
						|
	query:= r".*:(\s*\d+[\s,]*)+"
 | 
						|
 | 
						|
	mut re := new() or { panic(err) }
 | 
						|
	//re.debug = 2
 | 
						|
	re.group_csave = [-1].repeat(3*20+1)  // we expect max 20 records
 | 
						|
 | 
						|
	re.compile_opt(query) or { println(err) return }
 | 
						|
 | 
						|
    q_str := re.get_query()
 | 
						|
    println("Query: $q_str")
 | 
						|
 | 
						|
    start, end := re.match_string(text)
 | 
						|
    if start < 0 {
 | 
						|
        println("ERROR : ${re.get_parse_error_string(start)}, $start")
 | 
						|
    } else {
 | 
						|
        println("found in [$start, $end] => [${text[start..end]}]")
 | 
						|
    }
 | 
						|
 | 
						|
    // groups capture
 | 
						|
    mut gi := 0
 | 
						|
    for gi < re.groups.len {
 | 
						|
        if re.groups[gi] >= 0 {
 | 
						|
            println("${gi/2} ${re.groups[gi]},${re.groups[gi+1]} :[${text[re.groups[gi]..re.groups[gi+1]]}]")
 | 
						|
        }
 | 
						|
        gi += 2
 | 
						|
    }
 | 
						|
 | 
						|
    // continuous saving
 | 
						|
    gi = 0
 | 
						|
    println("num: ${re.group_csave[0]}")
 | 
						|
    for gi < re.group_csave[0] {
 | 
						|
        id := re.group_csave[1+gi*3]
 | 
						|
        st := re.group_csave[1+gi*3+1]
 | 
						|
        en := re.group_csave[1+gi*3+2]
 | 
						|
        println("cg id: ${id} [${st}, ${en}] => [${text[st..en]}]")
 | 
						|
        gi++
 | 
						|
    }
 | 
						|
}
 | 
						|
```
 | 
						|
 | 
						|
The output will be:
 | 
						|
 | 
						|
```
 | 
						|
Query: .*:(\s*\d+[\s,]*)+
 | 
						|
found in [0, 21] => [tst: 01,23,45 ,56, 78]
 | 
						|
0 19,21 :[78]
 | 
						|
num: 5
 | 
						|
cg id: 0 [4, 8] => [ 01,]
 | 
						|
cg id: 0 [8, 11] => [23,]
 | 
						|
cg id: 0 [11, 15] => [45 ,]
 | 
						|
cg id: 0 [15, 19] => [56, ]
 | 
						|
cg id: 0 [19, 21] => [78]
 | 
						|
```
 | 
						|
 | 
						|
### Named capturing groups
 | 
						|
 | 
						|
This regex module support partially the question mark `?` PCRE syntax for groups.
 | 
						|
 | 
						|
`(?:abcd)` **non capturing group**:  the content of the group will not be saved
 | 
						|
 | 
						|
`(?P<mygroup>abcdef)` **named group:** the group content is saved and labeled as `mygroup`
 | 
						|
 | 
						|
The label of the groups is saved in the `group_map` of the `RE` struct,
 | 
						|
this is a map from `string` to `int` where the value is the index in `group_csave` list of index.
 | 
						|
 | 
						|
Have a look at the example for the use of them.
 | 
						|
 | 
						|
example:
 | 
						|
 | 
						|
```v oksyntax
 | 
						|
import regex
 | 
						|
fn main() {
 | 
						|
	test_regex()
 | 
						|
 | 
						|
	text := "http://www.ciao.mondo/hello/pippo12_/pera.html"
 | 
						|
	query:= r"(?P<format>https?)|(?:ftps?)://(?P<token>[\w_]+.)+"
 | 
						|
 | 
						|
	mut re := new()
 | 
						|
	re.debug = 2
 | 
						|
 | 
						|
	// must provide an array of the right size if want the continuos saving of the groups
 | 
						|
	re.group_csave = [-1].repeat(3*20+1)
 | 
						|
 | 
						|
	re.compile_opt(query) or { println(err) return }
 | 
						|
 | 
						|
    q_str := re.get_query()
 | 
						|
    println("O.Query: $query")
 | 
						|
    println("Query  : $q_str")
 | 
						|
 | 
						|
    re.debug = 0
 | 
						|
    start, end := re.match_string(text)
 | 
						|
    if start < 0 {
 | 
						|
        err_str := re.get_parse_error_string(start)
 | 
						|
        println("ERROR : $err_str, $start")
 | 
						|
    } else {
 | 
						|
        text1 := text[start..end]
 | 
						|
        println("found in [$start, $end] => [$text1]")
 | 
						|
    }
 | 
						|
 | 
						|
    // groups
 | 
						|
    mut gi := 0
 | 
						|
    for gi < re.groups.len {
 | 
						|
        if re.groups[gi] >= 0 {
 | 
						|
            println("${gi/2} ${re.groups[gi]},${re.groups[gi+1]} :[${text[re.groups[gi]..re.groups[gi+1]]}]")
 | 
						|
        }
 | 
						|
        gi += 2
 | 
						|
    }
 | 
						|
    // continuous saving
 | 
						|
    gi = 0
 | 
						|
    println("num of group item saved: ${re.group_csave[0]}")
 | 
						|
    for gi < re.group_csave[0] {
 | 
						|
        id := re.group_csave[1+gi*3]
 | 
						|
        st := re.group_csave[1+gi*3+1]
 | 
						|
        en := re.group_csave[1+gi*3+2]
 | 
						|
        println("cg id: ${id} [${st}, ${en}] => [${text[st..en]}]")
 | 
						|
        gi++
 | 
						|
    }
 | 
						|
    println("raw array: ${re.group_csave[0..gi*3+2-1]}")
 | 
						|
 | 
						|
    // named capturing groups
 | 
						|
    println("named capturing groups:")
 | 
						|
    for g_name in re.group_map.keys() {
 | 
						|
        s,e := re.get_group(g_name)
 | 
						|
        if s >= 0 && e > s {
 | 
						|
            println("'${g_name}':[$s, $e] => '${text[s..e]}'")
 | 
						|
        } else {
 | 
						|
            println("Group [${g_name}] doesn't exist.")
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
```
 | 
						|
 | 
						|
Output:
 | 
						|
 | 
						|
```
 | 
						|
O.Query: (?P<format>https?)|(?:ftps?)://(?P<token>[\w_]+.)+
 | 
						|
Query  : #0(?P<format>https?)|{8,14}(?:ftps?)://#1(?P<token>[\w_]+.)+
 | 
						|
found in [0, 46] => [http://www.ciao.mondo/hello/pippo12_/pera.html]
 | 
						|
0 0,4 :[http]
 | 
						|
1 42,46 :[html]
 | 
						|
num of group item saved: 8
 | 
						|
cg id: 0 [0, 4] => [http]
 | 
						|
cg id: 1 [7, 11] => [www.]
 | 
						|
cg id: 1 [11, 16] => [ciao.]
 | 
						|
cg id: 1 [16, 22] => [mondo/]
 | 
						|
cg id: 1 [22, 28] => [hello/]
 | 
						|
cg id: 1 [28, 37] => [pippo12_/]
 | 
						|
cg id: 1 [37, 42] => [pera.]
 | 
						|
cg id: 1 [42, 46] => [html]
 | 
						|
raw array: [8, 0, 0, 4, 1, 7, 11, 1, 11, 16, 1, 16, 22, 1, 22, 28, 1, 28, 37, 1, 37, 42, 1, 42, 46]
 | 
						|
named capturing groups:
 | 
						|
'format':[0, 4] => 'http'
 | 
						|
'token':[42, 46] => 'html'
 | 
						|
```
 | 
						|
 | 
						|
## Flags
 | 
						|
 | 
						|
It is possible to set some flags in the regex parser that change the behavior of the parser itself.
 | 
						|
 | 
						|
```v oksyntax
 | 
						|
// example of flag settings
 | 
						|
mut re := regex.new()
 | 
						|
re.flag = regex.F_BIN
 | 
						|
```
 | 
						|
 | 
						|
- `F_BIN`: parse a string as bytes, utf-8 management disabled.
 | 
						|
 | 
						|
- `F_EFM`: exit on the first char matches in the query, used by the find function.
 | 
						|
- `F_MS`: matches only if the index of the start match is 0,
 | 
						|
    same as `^` at the start of the query string.
 | 
						|
- `F_ME`: matches only if the end index of the match is the last char of the input string,
 | 
						|
    same as `$` end of query string.
 | 
						|
- `F_NL`: stop the matching if found a new line char `\n` or `\r`
 | 
						|
 | 
						|
## Functions
 | 
						|
 | 
						|
### Initializer
 | 
						|
 | 
						|
These functions are helper that create the `RE` struct,
 | 
						|
a `RE` struct can be created manually if you needed.
 | 
						|
 | 
						|
#### **Simplified initializer**
 | 
						|
 | 
						|
```v
 | 
						|
// regex create a regex object from the query string and compile it
 | 
						|
pub fn regex_opt(in_query string) ?RE
 | 
						|
```
 | 
						|
 | 
						|
#### **Base initializer**
 | 
						|
 | 
						|
```v
 | 
						|
// new_regex create a REgex of small size, usually sufficient for ordinary use
 | 
						|
pub fn new() RE
 | 
						|
 | 
						|
// new_regex_by_size create a REgex of large size, mult specify the scale factor of the memory that will be allocated
 | 
						|
pub fn new_by_size(mult int) RE
 | 
						|
```
 | 
						|
After a base initializer is used, the regex expression must be compiled with:
 | 
						|
```v oksyntax
 | 
						|
// compile compiles the REgex returning an error if the compilation fails
 | 
						|
pub fn (re mut RE) compile_opt(in_txt string) ?
 | 
						|
```
 | 
						|
 | 
						|
### Operative Functions
 | 
						|
 | 
						|
These are the operative functions
 | 
						|
 | 
						|
```v oksyntax
 | 
						|
// match_string try to match the input string, return start and end index if found else start is -1
 | 
						|
pub fn (re mut RE) match_string(in_txt string) (int,int)
 | 
						|
 | 
						|
// find try to find the first match in the input string, return start and end index if found else start is -1
 | 
						|
pub fn (re mut RE) find(in_txt string) (int,int)
 | 
						|
 | 
						|
// find_all find all the "non overlapping" occurrences of the matching pattern, return a list of start end indexes
 | 
						|
pub fn (re mut RE) find_all(in_txt string) []int
 | 
						|
 | 
						|
// replace return a string where the matches are replaced with the replace string, only non overlapped matches are used
 | 
						|
pub fn (re mut RE) replace(in_txt string, repl string) string
 | 
						|
```
 | 
						|
 | 
						|
## Debugging
 | 
						|
 | 
						|
This module has few small utilities to help the writing of regex expressions.
 | 
						|
 | 
						|
### **Syntax errors highlight**
 | 
						|
 | 
						|
the following example code show how to visualize the syntax errors in the compilation phase:
 | 
						|
 | 
						|
```v oksyntax
 | 
						|
query:= r"ciao da ab[ab-]"  // there is an error, a range not closed!!
 | 
						|
mut re := new()
 | 
						|
 | 
						|
re.compile_opt(query) or { println(err) }
 | 
						|
 | 
						|
// output!!
 | 
						|
 | 
						|
//query: ciao da ab[ab-]
 | 
						|
//err  : ----------^
 | 
						|
//ERROR: ERR_SYNTAX_ERROR
 | 
						|
 | 
						|
```
 | 
						|
 | 
						|
### **Compiled code**
 | 
						|
 | 
						|
It is possible to view the compiled code calling the function `get_query()`.
 | 
						|
The result will be something like this:
 | 
						|
 | 
						|
```
 | 
						|
========================================
 | 
						|
v RegEx compiler v 0.9c output:
 | 
						|
PC:  0 ist: 7fffffff [a]      query_ch {  1,  1}
 | 
						|
PC:  1 ist: 7fffffff [b]      query_ch {  1,MAX}
 | 
						|
PC:  2 ist: 88000000 PROG_END {  0,  0}
 | 
						|
========================================
 | 
						|
```
 | 
						|
 | 
						|
`PC`:`int` is the program counter or step of execution, each single step is a token.
 | 
						|
 | 
						|
`ist`:`hex` is the token instruction id.
 | 
						|
 | 
						|
`[a]` is the char used by the token.
 | 
						|
 | 
						|
`query_ch` is the type of token.
 | 
						|
 | 
						|
`{m,n}` is the quantifier, the greedy off flag  `?`  will be showed if present in the token
 | 
						|
 | 
						|
### **Log debug**
 | 
						|
 | 
						|
The log debugger allow to print the status of the regex parser when the parser is running.
 | 
						|
 | 
						|
It is possible to have two different level of debug: 1 is normal while 2 is verbose.
 | 
						|
 | 
						|
here an example:
 | 
						|
 | 
						|
*normal*
 | 
						|
 | 
						|
list only the token instruction with their values
 | 
						|
 | 
						|
```
 | 
						|
// re.flag = 1 // log level normal
 | 
						|
flags: 00000000
 | 
						|
#   2 s:     ist_load PC:   0=>7fffffff i,ch,len:[  0,'a',1] f.m:[ -1, -1] query_ch: [a]{1,1}:0 (#-1)
 | 
						|
#   5 s:     ist_load PC:   1=>7fffffff i,ch,len:[  1,'b',1] f.m:[  0,  0] query_ch: [b]{2,3}:0? (#-1)
 | 
						|
#   7 s:     ist_load PC:   1=>7fffffff i,ch,len:[  2,'b',1] f.m:[  0,  1] query_ch: [b]{2,3}:1? (#-1)
 | 
						|
#  10 PROG_END
 | 
						|
```
 | 
						|
 | 
						|
*verbose*
 | 
						|
 | 
						|
list all the instructions and states of the parser
 | 
						|
 | 
						|
```
 | 
						|
flags: 00000000
 | 
						|
#   0 s:        start PC: NA
 | 
						|
#   1 s:     ist_next PC: NA
 | 
						|
#   2 s:     ist_load PC:   0=>7fffffff i,ch,len:[  0,'a',1] f.m:[ -1, -1] query_ch: [a]{1,1}:0 (#-1)
 | 
						|
#   3 s:  ist_quant_p PC:   0=>7fffffff i,ch,len:[  1,'b',1] f.m:[  0,  0] query_ch: [a]{1,1}:1 (#-1)
 | 
						|
#   4 s:     ist_next PC: NA
 | 
						|
#   5 s:     ist_load PC:   1=>7fffffff i,ch,len:[  1,'b',1] f.m:[  0,  0] query_ch: [b]{2,3}:0? (#-1)
 | 
						|
#   6 s:  ist_quant_p PC:   1=>7fffffff i,ch,len:[  2,'b',1] f.m:[  0,  1] query_ch: [b]{2,3}:1? (#-1)
 | 
						|
#   7 s:     ist_load PC:   1=>7fffffff i,ch,len:[  2,'b',1] f.m:[  0,  1] query_ch: [b]{2,3}:1? (#-1)
 | 
						|
#   8 s:  ist_quant_p PC:   1=>7fffffff i,ch,len:[  3,'b',1] f.m:[  0,  2] query_ch: [b]{2,3}:2? (#-1)
 | 
						|
#   9 s:     ist_next PC: NA
 | 
						|
#  10 PROG_END
 | 
						|
#  11 PROG_END
 | 
						|
```
 | 
						|
 | 
						|
the columns have the following meaning:
 | 
						|
 | 
						|
`#   2` number of actual steps from the start of parsing
 | 
						|
 | 
						|
`s:     ist_next` state of the present step
 | 
						|
 | 
						|
`PC:   1` program counter of the step
 | 
						|
 | 
						|
`=>7fffffff ` hex code of the instruction
 | 
						|
 | 
						|
`i,ch,len:[  0,'a',1]` `i` index in the source string, `ch` the char parsed,
 | 
						|
`len` the length in byte of the char parsed
 | 
						|
 | 
						|
`f.m:[  0,  1]` `f` index of the first match in the source string, `m` index that is actual matching
 | 
						|
 | 
						|
`query_ch: [b]` token in use and its char
 | 
						|
 | 
						|
`{2,3}:1?` quantifier `{min,max}`, `:1` is the actual counter of repetition,
 | 
						|
`?` is the greedy off flag if present.
 | 
						|
 | 
						|
### **Custom Logger output**
 | 
						|
 | 
						|
The debug functions output uses the `stdout` as default,
 | 
						|
it is possible to  provide an alternative output setting a custom output function:
 | 
						|
 | 
						|
```v oksyntax
 | 
						|
// custom print function, the input will be the regex debug string
 | 
						|
fn custom_print(txt string) {
 | 
						|
	println("my log: $txt")
 | 
						|
}
 | 
						|
 | 
						|
mut re := new()
 | 
						|
re.log_func = custom_print  // every debug output from now will call this function
 | 
						|
 | 
						|
```
 | 
						|
 | 
						|
## Example code
 | 
						|
 | 
						|
Here there is a simple code to perform some basically match of strings
 | 
						|
 | 
						|
```v oksyntax
 | 
						|
struct TestObj {
 | 
						|
	source string // source string to parse
 | 
						|
	query  string // regex query string
 | 
						|
	s int         // expected match start index
 | 
						|
	e int         // expected match end index
 | 
						|
}
 | 
						|
const (
 | 
						|
tests = [
 | 
						|
	TestObj{"this is a good.",r"this (\w+) a",0,9},
 | 
						|
	TestObj{"this,these,those. over",r"(th[eio]se?[,. ])+",0,17},
 | 
						|
	TestObj{"test1@post.pip.com, pera",r"[\w]+@([\w]+\.)+\w+",0,18},
 | 
						|
	TestObj{"cpapaz ole. pippo,",r".*c.+ole.*pi",0,14},
 | 
						|
	TestObj{"adce aabe",r"(a(ab)+)|(a(dc)+)e",0,4},
 | 
						|
]
 | 
						|
)
 | 
						|
 | 
						|
fn example() {
 | 
						|
	for c,tst in tests {
 | 
						|
		mut re := regex.new()
 | 
						|
		re.compile_opt(tst.query) or { println(err) continue }
 | 
						|
 | 
						|
        // print the query parsed with the groups ids
 | 
						|
        re.debug = 1 // set debug on at minimum level
 | 
						|
        println("#${c:2d} query parsed: ${re.get_query()}")
 | 
						|
        re.debug = 0
 | 
						|
 | 
						|
        // do the match
 | 
						|
        start, end := re.match_string(tst.source)
 | 
						|
        if start >= 0 && end > start {
 | 
						|
            println("#${c:2d} found in: [$start, $end] => [${tst.source[start..end]}]")
 | 
						|
        }
 | 
						|
 | 
						|
        // print the groups
 | 
						|
        mut gi := 0
 | 
						|
        for gi < re.groups.len {
 | 
						|
            if re.groups[gi] >= 0 {
 | 
						|
                println("group ${gi/2:2d} :[${tst.source[re.groups[gi]..re.groups[gi+1]]}]")
 | 
						|
            }
 | 
						|
            gi += 2
 | 
						|
        }
 | 
						|
        println("")
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
fn main() {
 | 
						|
	example()
 | 
						|
}
 | 
						|
```
 | 
						|
 | 
						|
more example code is available in the test code for the `regex` module `vlib\regex\regex_test.v`.
 |